CALCULATION PACKAGE

August 31, 2023

JayMarc Homes
8446 SE 37 ${ }^{\text {th }}$ St
Dubey Residence

Mercer Island, Washington

MULHERN \& KULP STRUCTURAL ENGINEERING, INC.
Prepared By:
John C. Leone, E.I.T.
Staff Engineer
Adam J. Cervantes, E.I.T.
Staff Engineer
Richard J. Zabel, P.E.
Project Manager + Director of Engineering

Signature, Seal \& Date

MERDER lgland, WA
M\&K Prajeat \#: 154-23Dロ1
Endineer: Aje
DATE: DS-MAY-2B

BEAM 8 HEADER CALCULATIONS
BEAM DESGRIPTIDN: TYP EXT HDR

$$
\begin{aligned}
& \text { Parameters: } \\
& L=\quad 9 \\
& 0=169 \quad w=0.336{ }^{\text {KLF }} \\
& L=70 \\
& 3=50 \\
& \square \\
& { }_{R_{\text {Max }}}^{\text {ANALYBII: }}=[1.51] \mathrm{K} \quad \mathrm{v}_{\mathrm{o}}=\square \mathrm{K}<\mathrm{V}_{\text {AIL }}=[3.89] \mathrm{K} \\
& \left.M_{\text {MAX }}=3.4\right]_{K-F T}<M_{\text {ALL }}=4.49 \mathrm{KFT} \\
& \left.\Delta_{\mathrm{tL}}=0.134\right] \mathrm{N} . \quad 805<L / 240 \\
& \text { H. } 10 \text { DF-L \#2 }
\end{aligned}
$$

BEAM DEEGRIPTIZN: HDR @ PRIMARY REAR WINDOW - KOOF

$D_{1}=44$
$S_{1}=64$
$w_{1}=0.108$ KLF $\quad W \%=0.336$
$P=1.34 \times$ (G.T)

ANALYEIE:
\square

\square $\mathrm{K}<\mathrm{v}_{\text {all }}=6.81 \mathrm{~K}$

$$
\begin{aligned}
& D_{2}=136 \\
& 52=200
\end{aligned}
$$

$m_{\text {max }}=5.22 \mathrm{~K}-\mathrm{Fr}$
in.
$<M_{\text {ALL }}=$ \square
6.94

K-FT
$C D=1.15$
\square <L/240 adequate

$$
6 \times 10 \mathrm{DF}-\mathrm{L} \# 2
$$

BEAM DESERIPTIGN: HDR @ BED 2 REAR WENDOW - ROOF
PARAMETERS:

$\begin{array}{ll}D_{1}=165 & w_{1}=0.408 \times L F \\ S_{1}=243 & p=W_{2}=0.092 \\ & =(G, T)\end{array}$

$$
4 \times 10 \text { DF-L \# 2 }
$$

Merger Island, WA
M\&K Prouedt \#: 154-23a口1
engineer: Adg
DATE: DB-MAY-Z3

BEAM \& HEADER CALCULATIONS

ENGINEER：AJB
DATE：ロЗ－MAY－23
BEAM \＆HEADER CALCULATIONS
BEAM DEEDRIPTIDN：HDR © GARAGE REAR WFNDOW－UPPER B7 PARAMETERE：

$$
D_{1}=217
$$

$$
L=233
$$

$$
w_{1}=0.392 \mathrm{kLF} w_{2}=0.678
$$

$$
P=1.93 \times(B 2)
$$

2.50 K

$$
6 \times 12 \mathrm{DF}-1 \times 2
$$

BEAM DEEDRIPTIDN：FLUSH BM．＠PMIMARY COVERED DECK－UPPER B8

$$
\begin{array}{rlr}
\text { Parameters: } & \mathrm{L}=5.5 \\
\mathrm{D}=229 & \mathrm{~W}=0.382 \mathrm{KLF} \\
\mathrm{~S}=153 & \mathrm{~F}=0
\end{array}
$$

$$
5 \text { 1/4"x11 1/4" LVL }
$$

BEAM DEEERIPTIDN：TYP．DECK JOIST © CVRD．DECK－UPPER B9
PARAMETERS：

$$
L=5.5
$$

$$
D=33
$$

$$
L=80
$$

$w=$ \square kLF

$$
P=
$$ $\mathrm{P}=\square \mathrm{L}$

ANALYSIS：

$$
2 \times 12 H F \# 2 \text { @ } 16^{\prime \prime} \text { o.c. (} 9^{1} / 2^{\prime \prime} \text { MIN. DEPTH) }
$$

$$
\begin{aligned}
& R_{\text {max }}=0.31 \mathrm{k} \quad \mathrm{v}_{\mathrm{o}}=\square \mathrm{K} \quad \mathrm{v}_{\mathrm{au}}=1.39 \mathrm{k}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{\mathrm{r}}=0.018 \mathrm{~m} \\
& \text { < L/240 }
\end{aligned}
$$

M\&K Pradeat \#: 154-23ロロ1
ENGINEER: AJI
DATE: OЗ-MAY-23

BEAM \& HEADER CALCULATIONS

M\&K Proueat 非: 154-230口1
ENGINEER: AJG
DATE: DG-MAY-ZB

BEAM 8\& HEADER CALCULATIONS
BEAM DEGGRIPTIUN: FLUSH BM. @ STATR GIDE WALL - OPPER BB
PARAMETERS:

$$
\begin{array}{ll}
L= & 15]_{K T} \\
w= & 0.307 \times L F \\
\mathrm{P}_{1}= & 0.3
\end{array}
$$

ANALYBIB:

$$
\begin{aligned}
& \left.R_{\operatorname{MAX}}=[4.4] K \quad v_{0}=\square<v_{A K L}=\square 20.11\right] K
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{\mathrm{th}}=\quad 0.078 \mathrm{~N} . \quad \mathrm{L} . \quad 999+1 / 24 \mathrm{D}
\end{aligned}
$$

$$
5^{1 / 2} \times 18^{\prime \prime} \quad \text { GLB }
$$

BEAM DEGERIPTIDN: FLUSH BM. @ STAFR SFDE -UPPER PARAMETERS:

$$
\begin{array}{ll}
L=10.38 & =1 \\
W=1.307 & 1.83 \\
\left.P_{1}=14 . T\right)
\end{array}
$$

Analvels: $\quad P_{7}=0.3(B 12) \quad P_{3}=0.27(6.7)^{3.64 h}$

$$
\begin{aligned}
& R_{M A X}=3.64 k<V_{\mathrm{DLL}}=2 \mathrm{~K}=2.1
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{n}=0.018 \mathrm{iN} . \quad \mathrm{L} \quad 999+<L / 240
\end{aligned}
$$

51/2" $\times 18^{11}$ GLB
BEAM DESCRIPTIGN: FLUSH BM @ ENTRY, GRT. RM. -UPPER.

Merger Igland，wa
M\＆K Proueat \＃：154－23001
Engineer：AuIC
DATE：ロG－MAY－ZB

BEAM 8 HEADER CALCULATIONS
GEAM DESERIPTION：TYP LANDING JOTST－UPPER
PARAMETERS：

$$
L=40
$$

$$
\begin{aligned}
& 0=13 \\
& L=40 \quad w=0.053 \times L F
\end{aligned}
$$

$$
P=
$$

\square $1 x$

ANALYSIS：

GEAM DEECRIPTIDN：FLUSH BM．© STAFR LANDING－UPPER BI7 PARAMETERS：
$1=8.55 \mathrm{FT}$

$$
D=25
$$

$w=$

$$
0.100]_{\text {KLF }}
$$

\square
レー75
$\mathrm{P}=$ \square K

adequate
4.10 DF－L 42

BEAM DESGRIPTIGN：FLUSH BM．© JUNIOR SUITE UUPPR B BIB

ANALYSIS：
ADEQUATE

$$
\begin{aligned}
& R_{\text {IAX }}=2.8 \quad v_{D}=\square K<V_{\text {ALL }}=2.8 \\
& \left.M_{\text {max }}=0.8{ }^{2}{ }^{\mathrm{K}-\mathrm{FT}}<\mathrm{M}_{\text {ALL }}=43.47\right]_{\mathrm{KFT}} \quad C_{D}=1.15 \\
& \Delta_{\mathrm{L}}=0.001 \mathrm{~N} . \quad \mathrm{L} .999+\quad<L / 240 \\
& 31 / 2^{\prime \prime} \times 18^{\prime \prime} \text { GLB }
\end{aligned}
$$

$$
\begin{aligned}
& { }^{\text {ANALYSIE: }} \mathrm{R}_{\text {max }}=0.43 \mathrm{k} \quad \mathrm{~V}_{\mathrm{o}}=\square \mathrm{K} \quad<\mathrm{V}_{\text {AII }}=3.89 \mathrm{k}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{\mathrm{n}}=0.032 \mathrm{~L} . \quad \mathrm{N} .999 \mathrm{C}<\mathrm{L} / 24 \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& R_{\text {max }}=0.13 \mathrm{k} \quad \mathrm{v}_{\mathrm{o}}=\square \mathrm{K}<\mathrm{v}_{\text {aut }}=1.39 \mathrm{k} \\
& M_{\text {max }}=0.17{ }^{k=F T}<M_{m a x}=1.67{ }_{k=F T} \\
& \Delta_{n}=0.006 \quad 4 \mathrm{~m} . \quad 499+<L / 240 \\
& \text { 2* } 10 \text { HF \#Z © } 16^{\prime \prime} \text { o.c. }
\end{aligned}
$$

BEAM \＆HEADER CALCULATIONS

BEAM \＆HEADER CALCULATIONS

Pradect Name: Dubey Residence JAYMARC HロMES
 M\&K Praject \#: $154-23 \square \square 1$
 ENGINEER: JCL
 DATE: 29-APR-Z3

Beam 8c Header Calculations

BEAM 8c HEADER CALCULATIONS
BEAM DEGERIPTIDN：1ST FLR FRMG－EXT WNDW HDR＠PLAY ROOM
PARAMETERS：

$$
\begin{array}{ll}
\text { METERS: } & \square \mathrm{FT} \\
\mathrm{~W}= & \square \mathrm{KLF} \\
\mathrm{P}= & \square
\end{array}
$$

ANALYSIS：

$$
\begin{array}{ll}
\mathrm{R}_{\max }=2.34 \mathrm{~K} & \mathrm{~V}_{\mathrm{D}}=\square \mathrm{K} \quad<\mathrm{V}_{\text {ALL }}=5.92 \mathrm{~K} \\
\mathrm{M}_{\max }=5.3 \mathrm{~K} \mathrm{FT} & <\mathrm{M}_{\text {ALL }}=6.03 \mathrm{~K}=\mathrm{FT}\left(\mathrm{C}_{\mathrm{D}}=1.0\right) \\
\Delta_{\mathrm{TL}}=0.151 \mathrm{~N} . & \mathrm{L} .714<\mathrm{L} / 24 \mathrm{C}
\end{array}
$$

6×10

\square

BEAM DEGERIPTIDN：1ST FLR FRMG－EXT WNDW HDR＠BED 3 ／ADU
PARAMETERS：
$\mathrm{L}=$

$\mathrm{w} 1=$
1.7 KLF \quad w2 $=1.2$
3.5 K

ANALYSIS：
$R_{\text {max }}=11.9 \mathrm{~K} \quad \mathrm{~V}_{\mathrm{D}}=$
$K<v_{\text {ALL }}=13.41 K$
$M_{\text {MAX }}=22.3$ K－FT $<M_{\text {ALL }}=30.36$ K－FT $\quad\left(C_{D}=/ .15\right)$
$\Delta_{\mathrm{TL}}=0.228 \mathrm{iN}$.
$L / 475<L / 24 \square$
$51 / 2 \times 12 \mathrm{GLB}$

BEAM DESCRIPTIGN：2ND FLR FRMG－DINING SGP MPR
PARAMETERS：
$\mathrm{L}=$
12.5 FT
$\mathrm{w}=0.3$ KLF
$\mathrm{P}=\quad \square \mathrm{K}$

ANALYSIS：
$R_{\text {max }}=1.9 \mathrm{k} k \quad \mathrm{v}_{\mathrm{D}}=\square \mathrm{v}_{\text {ALL }}=8.24 \mathrm{k}$
$M_{\text {max }}=$
$5.9 \mathrm{~K}_{\mathrm{FT}}<\mathrm{M}_{\text {ALL }}=$
$[10.16]_{k-F T}\left(C_{D}=1.15\right)$

$\Delta_{\mathrm{rL}}=$
0.183 in．

L／ 819 ＜L／24ロ
6×12

Beam sc Header Calculations

BEAM DESCRIPTION: 1ST FLR FRIG - FLUSH BM @ STAIR LANDING

PARAMETERS:

2.6k 3.0k

ANALYSIS:
$\mathrm{R}_{\text {MAX }}=$
$M_{\text {MAX }}=$

 $\mathrm{K}<\mathrm{V}_{\text {ALL }}=17.5 \mathrm{~K}$
雨
$\Delta_{\mathrm{TL}}=0.273$
\square $]_{k-F T}\left(C_{D}=1.0\right)$
$<M_{\text {ALL }}=$

$$
0.273
$$

$$
0
$$

\square
\square < L/240

$$
51 / 2 \times 18 G L B
$$

ANALYSIS:
$\mathrm{R}_{\text {max }}=$

$v_{\mathrm{D}}=$ \qquad $\mathrm{K}<\mathrm{v}_{\text {ALL }}=3.89 \mathrm{~K}$
$M_{\text {max }}=1.9 \mathrm{~m}_{\mathrm{K}-\mathrm{FT}} \quad<\mathrm{M}_{\text {ALL }}=4.49$ K-FT $\left(\mathrm{C}_{\mathrm{D}}=1.0\right)$
$\Delta_{\mathrm{TL}}=\quad 0.040 \mathrm{LN} . \quad \mathrm{L} / 999+\quad$ L/24ロ
4×10 DF-L \#2

BEAM DESCRIPTION:

PARAMETERS:

ANALYSIS: \square

Praject Name：Jaymarc Hames
Praject Name：لAYMARC HIMES
M\＆K Praject \＃：154－23ロロ1
ENGINEER：AJC
DATE：27－MAR－23

OVERSTRENGTH CALCULATIONS

WALL DESCRIPTIDN／GW \＃： 302

PARAMETERS：

L＝	$17 . \square$	FT
$\mathrm{H}=$	9.1	FT
$\mathrm{E}=$	1.60	K
$\mathrm{W}_{\text {dLWall }}=$	ロ． 10	KLF
$W_{D L}=$	0． 108	KLF
$\Omega_{0}=$	2.5	（Asce table 12．2．1 fotinate ©）
sDs $=$	1.126	

ANALYSIS：

$\mathrm{EMH}^{\text {¢ }}=\Omega \square * \mathrm{E}=$	4.00	$\mathrm{Ev}_{\mathrm{v}}=\square .2 *$ SDS＊DL＝	0.796
$\mathrm{Em}_{\text {м }}=\mathrm{EmH}_{\text {¢ }}+\mathrm{Ev}$		$\mathrm{E}_{\text {м }}=\mathrm{E}_{\text {м }}+\mathrm{Ev}^{\text {l }}=$	4.796
$\mathrm{E}_{\text {м }}=\mathrm{EmH}_{\text {¢ }}-\mathrm{Ev}_{\text {v }}$			
		$\mathrm{E}_{\mathrm{M}}=\mathrm{EmH}_{\text {¢ }}-\mathrm{E}_{\mathrm{v}}=$	3.204

$\mathrm{Em}_{\text {M }}(\mathrm{MAX})=\sum \mathrm{MA}^{\prime}=0=$		$\mathrm{RB}=$	$1.8 \mathrm{DL}+2.6 \mathrm{E}$
		$\mathrm{RA}=$	1．8DL－2．6E
$E_{M}(\mathrm{MIN})=\sum \mathrm{MA}_{A}=0=$	3．20（9．1）＋ $0.2 \mathrm{CB}(17)(8.5)-\mathrm{RB}(17)$	$\mathrm{R}_{\mathrm{B}}=$	$1.8 \mathrm{DL}+1.7 \mathrm{E}$
		RA $=$	1．8DL－1．7E

CHECK BEAMS FIR AXIAL FQRCES SHIWN USING LQAD COMBGS PER SECTIGN 12．4．3．1（ASD）

ALLOWABLE STESS PERMITTED TO BE INCREASED BY 1.2

DESCRIPTION: B15-2ND FLR FRMG - FLUSH BM @ ENTRY / GREAT ROOM

CODE REFERENCES

Calculations per AISC 360-16, IBC 2018, CBC 2019, ASCE 7-16
Load Combination Set : ASCE 7-16

Material Properties

Analysis Method :Allowable Strength Design	Fy: Steel Yield:
Beam Bracing: Beam is Fully Braced against lateral-torsional buckling	E: Modulus:
Bending Axis: \quad Major Axis Bending	

Applied Loads

Beam self weight NOT internally calculated and added
Load for Span Number 1
Uniform Load: $\mathrm{D}=0.670, \mathrm{~L}=0.3090, \mathrm{~S}=0.460 \mathrm{k} / \mathrm{ft}$, Extent $=0.0--\gg 5.10 \mathrm{ft}$, Tributary Width $=1.0 \mathrm{ft}$
Uniform Load: $D=0.6520, L=0.3090, S=0.4340 \mathrm{k} / \mathrm{ft}$, Extent $=5.10--\gg 8.150 \mathrm{ft}$, Tributary Width $=1.0 \mathrm{ft}$
Uniform Load: D $=0.180, \mathrm{~L}=0.480 \mathrm{k} / \mathrm{ft}$, Extent $=8.150$-->> 12.50 ft , Tributary Width $=1.0 \mathrm{ft}$
Uniform Load: $\mathrm{D}=0.1650, \mathrm{~L}=0.440 \mathrm{k} / \mathrm{ft}$, Extent $=12.50$-->> 17.560 ft , Tributary Width $=1.0 \mathrm{ft}$
Uniform Load: $D=0.4060, L=0.2780, S=0.2450 \mathrm{k} / \mathrm{ft}$, Extent $=17.560--\gg 23.50 \mathrm{ft}$, Tributary Width $=1.0 \mathrm{ft}$
Point Load: $\mathrm{D}=1.330, \mathrm{~S}=1.480 \mathrm{k} @ 8.150 \mathrm{ft}$
Point Load: D $=1.820, \mathrm{~S}=1.820 \mathrm{k} @ 17.560 \mathrm{ft}$

Point Load: D = 1.80, E = $2.60 \mathrm{k} @ 7.90 \mathrm{ft}$, (SW\#302 O.S.)
Point Load: D $=0.90, \mathrm{~S}=1.30 \mathrm{k} @ 5.0 \mathrm{ft}$

Steel Beam
(c) ENERCALC INC 1983-2022

DESCRIPTION: B15-2ND FLR FRMG - FLUSH BM @ ENTRY / GREAT ROOM
Maximum Forces \& Stresses for Load Combinations

Load Combination		Max Stre	Ratios			mmary of M	ent Valu				Summar	of She	alues
Segment Length	Span \#	M	V	Mmax +	Mmax -	Ma Max	Mnx Mn	/Omega	Cb	Rm	Va Max	VnxVn	mega
D Only													
Dsgn. L = 23.50 ft	1	0.252	0.090	45.85		45.85	304.17	182.14	1.00	1.00	8.75	146.40	97.60
+D+L													
Dsgn. L = 23.50 ft	1	0.391	0.133	71.20		71.20	304.17	182.14	1.00	1.00	13.01	146.40	97.60
+D+Lr													
Dsgn. L = 23.50 ft	1	0.252	0.090	45.85		45.85	304.17	182.14	1.00	1.00	8.75	146.40	97.60
+D+S													
Dsgn. L = 23.50 ft	1	0.400	0.148	72.84		72.84	304.17	182.14	1.00	1.00	14.43	146.40	97.60
+D+0.750Lr+0.750L													
Dsgn. L = 23.50 ft	1	0.355	0.122	64.59		64.59	304.17	182.14	1.00	1.00	11.95	146.40	97.60
+D+0.750L+0.750S													
Dsgn. L = 23.50 ft	1	0.464	0.166	84.49		84.49	304.17	182.14	1.00	1.00	16.21	146.40	97.60
+D+0.60W													
Dsgn. L = 23.50 ft	1	0.252	0.090	45.85		45.85	304.17	182.14	1.00	1.00	8.75	146.40	97.60
+1.126D+0.70E													
Dsgn. L = 23.50 ft	1	0.335	0.113	61.04		61.04	304.17	182.14	1.00	1.00	11.06	146.40	97.60
+1.126D-0.70E													
Dsgn. L = 23.50 ft	1	0.232	0.089	42.25		42.25	304.17	182.14	1.00	1.00	8.65	146.40	97.60
+D+0.750Lr+0.750L+0.	OW												
Dsgn. L $=23.50 \mathrm{ft}$	1	0.355	0.122	64.59		64.59	304.17	182.14	1.00	1.00	11.95	146.40	97.60
+D+0.750L+0.750S+0.	W												
Dsgn. L = 23.50 ft	1	0.464	0.166	84.49		84.49	304.17	182.14	1.00	1.00	16.21	146.40	97.60
+1.090D+0.750L+0.750	+0.52501												
Dsgn. L = 23.50 ft	1	0.525	0.183	95.64		95.64	304.17	182.14	1.00	1.00	17.90	146.40	97.60
+1.090D+0.750L+0.750	-0.5250E												
Dsgn. L = 23.50 ft	1	0.449	0.165	81.75		81.75	304.17	182.14	1.00	1.00	16.09	146.40	97.60
+0.60D+0.60W													
Dsgn. L = 23.50 ft	1	0.151	0.054	27.51		27.51	304.17	182.14	1.00	1.00	5.25	146.40	97.60
+0.470D+0.70E													
Dsgn. L = 23.50 ft	1	0.170	0.055	31.01		31.01	304.17	182.14	1.00	1.00	5.32	146.40	97.60
+0.470D-0.70E													
Dsgn. L = 23.50 ft	1	0.070	0.030	12.66		12.66	304.17	182.14	1.00	1.00	2.90	146.40	97.60

Overall Maximum Deflections

Load Combination Span	Max. "-" Defl Locater	ion in Span	Load Combination	Max. "+" Defl	Location in Span
+1.090D+0.750L+0.750S+0.5250I 1	0.6252	11.414		0.0000	0.000
Vertical Reactions	Support notation : Far left is \#1			Values in KIPS	
Load Combination	Support 1 Support 2				
Max Upward from all Load Conditions	17.899	13.783			
Max Upward from Load Combinations	17.899	13.783			
Max Upward from Load Cases	8.751	6.534			
D Only	8.751	6.534			
+D+L	13.014	10.755			
+D+Lr	8.751	6.534			
+D+S	14.427	10.583			
+D+0.750Lr+0.750L	11.949	9.700			
+D+0.750L+0.750S	16.206	12.736			
+D+0.60W	8.751	6.534			
+1.126D+0.70E	11.062	7.969			
+D+0.750Lr+0.750L+0.450W	11.949	9.700			
+D+0.750L+0.750S+0.450W	16.206	12.736			
+1.090D+0.750L+0.750S+0.5250E	17.899	13.783			
+0.60D+0.60W	5.251	3.920			
+0.470D+0.70E	5.321	3.683			
D Only	8.751	6.534			
L Only	4.263	4.221			
S Only	5.676	4.049			
E Only	1.726	0.874			
H Only					

Cantilevered Retaining Wall

DESCRIPTION: 10' CANT'D WALL @ SLAB
Code Reference.
Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

| Criteria | |
| :--- | :--- | :---: |
| Retained Height | $=10.00 \mathrm{ft}$ |
| Wall height above soil | $=0.00 \mathrm{ft}$ |
| Slope Behind Wall | $=0.00$ |
| Height of Soil over Toe | $=0.00 \mathrm{in}$ |
| Water table above
 bottom of footing $=$ 0.0 ft | |

Surcharge Loads

Surcharge Over Heel $=$	0.0 psf
Used To Resist Sliding \& Overturning	
Surcharge Over Toe $=$	0.0 psf
Used for Sliding \& Overturning	

Axial Load Applied to Stem

Axial Dead Load	$=$	0.0 lbs
Axial Live Load	$=$	0.0 lbs
Axial Load Eccentricity	$=$	0.0 in

Earth Pressure Seismic Load
Method : Uniform
Multiplier Used $=8.00$
(Multiplier used on soil density)
(Multiplier used on soil density)

Soil Data		
Allow Soil Bearing	500.0 psf	
Equivalent Fluid Pressure Method		
Active Heel Pressure	$=35.0 \mathrm{psf} / \mathrm{ft}$	
	=	
Passive Pressure	250.0 psf/ft	
Soil Density, Heel	$=110.00 \mathrm{pcf}$	
Soil Density, Toe	$=110.00 \mathrm{pcf}$	
Footing\|	Soil Friction	$=0.400$
Soil height to ignore for passive pressure	$=12.00$ in	

Lateral Load Applied to Stem

Lateral Load	$=$	$0.0 \mathrm{\#} / \mathrm{ft}$
\ldots Height to Top	$=$	0.00 ft
\ldots Height to Bottom	$=$	0.00 ft
Load Type	$=$	Wind (W)
	(Service Level)	
Wind on Exposed Stem	$=$	0.0 psf
(Strength Level)		

Adjacent Footing Load		
Adjacent Footing Load	$=$	0.0 lbs
Footing Width	$=$	0.00 ft
Eccentricity	$=$	0.00 in
Wall to Ftg CL Dist	$=$	0.00 ft
Footing Type		Spread Footing
Base Above/Below Soil $=$ 0.0 ft at Back of Wall $=$ 0.300.		

| Uniform Seismic Force | $=88.000$ |
| :--- | ---: | ---: |
| Total Seismic Force | $=968.000$ |

Cantilevered Retaining Wall

DESCRIPTION: 10' CANT'D WALL @ SLAB

Cantilevered Retaining Wall

DESCRIPTION: 10' CANT'D WALL @ SLAB

Concrete Stem Rebar Area Details

2nd Stem	Vertical Reinforcing
As (based on applied moment) :	$0.1294 \mathrm{in2} / \mathrm{ft}$
$(4 / 3)^{*}$ As :	$0.1726 \mathrm{in} 2 / \mathrm{ft}$
200bd/fy : 200(12)(6.5)/60000 :	$0.26 \mathrm{in2} / \mathrm{ft}$
$0.0018 \mathrm{bh}: 0.0018(12)(8):$	$0.1728 \mathrm{in} 2 / \mathrm{ft}$
	$===========$
Required Area :	$0.1728 \mathrm{in} 2 / \mathrm{ft}$
Provided Area :	$0.31 \mathrm{in2} / \mathrm{ft}$
Maximum Area :	$0.8805 \mathrm{in} 2 / \mathrm{ft}$
Bottom Stem	$\underline{\text { Vertical Reinforcing }}$
As (based on applied moment) :	$0.4937 \mathrm{in} 2 / \mathrm{ft}$
$(4 / 3)^{*}$ As :	$0.6583 \mathrm{in} 2 / \mathrm{ft}$
200bd/fy : 200(12)(6.5)/60000 :	$0.26 \mathrm{in2} / \mathrm{ft}$
0.0018bh : 0.0018(12)(8) :	$0.1728 \mathrm{in2/ft}$
	$===========$
Required Area :	$0.4937 \mathrm{in} 2 / \mathrm{ft}$
Provided Area :	$0.62 \mathrm{in2/ft}$
Maximum Area :	$0.8805 \mathrm{in} 2 / \mathrm{ft}$

Horizontal Reinforcing
Min Stem T\&S Reinf Area 1.152 in2
Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft
Horizontal Reinforcing Options :
One layer of : \quad Two layers of :
\#4@ 12.50 in \quad \#4@ 25.00 in
\#5@ 19.38 in
\#6@ 27.50 in 38.75 in
\#6@ 55.00 in

Horizontal Reinforcing
Min Stem T\&S Reinf Area 0.768 in2
Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft Horizontal Reinforcing Options :

One layer of :	Two layers of :
\#4@ 12.50 in	\#4@ 25.00 in
\#5@ 19.38 in	\#5@ 38.75 in
\#6@ 27.50 in	\#6@ 55.00 in

Footing Data		
Toe Width	$=$	1.50 ft
Heel Width	$=$	3.50
Total Footing Width	$=$	5.00
Footing Thickness	$=$	12.00 in
Key Width	$=$	0.00 in
Key Depth	$=$	0.00 in
Key Distance from Toe	$=$	0.00 ft
f'c $=$ 2,500 psi Fy	$=$	$60,000 \mathrm{psi}$
Footing Concrete Density	$=$	150.00 pcf
Min. As \%	$=$	0.0018
Cover @ Top 2.00	@ Btm. $=3.00 \mathrm{in}$	

Footing Design Results			Heel	
		Toe		
Factored Pressure	=	2,743	0 psf	
Mu' : Upward	=	2,775	2,023 ft-\#	
Mu' : Downward	=	203	10,258 ft-\#	
Mu: Design	$=$	2,573 OK	8,235 ft-\#	OK
phiMn	=	22,203	13,005 ft-\#	
Actual 1-Way Shear	=	18.20	31.40 psi	
Allow 1-Way Shear	=	75.00	75.00 psi	
Toe Reinforcing		\# 5 @ 6.00 in		
Heel Reinforcing		\# 5 @ 12.00 in		
Key Reinforcing		None Spec'd		
Footing Torsion, Tu		=	$0.00 \mathrm{ft-lbs}$	
Footing Allow. Torsion	, ph	hi Tu	0.00 ft -lbs	

If torsion exceeds allowable, provide
supplemental design for footing torsion.

Other Acceptable Sizes \& Spacings

Toe: \#4@ 9.25 in , \#5@ 14.35 in, \#6@ 20.37 in, \#7@ 27.77 in, \#8@ 36.57 in , \#9@ 46.29 in, \#10@ 58.79 in

Heel: \#4@ 9.03 in, \#5@ 13.99 in, \#6@ 19.86 in, \#7@ 27.09 in, \#8@ 35.66 in, \#9@ 45.15 in, \#10@ 57.34 in

Key: No key defined

Min footing T\&S reinf Area Min footing T\&S reinf Area per foot	$1.30 \quad$ in2 $0.26 \quad$ in2 ft
If one layer of horizontal bars:	If two layers of horizontal bars:
\#4@ 9.26 in	\#4@ 18.52 in
\#5@ 14.35 in	\#5@ 28.70 in
\#6@ 20.37 in	\#6@ 40.74 in

Cantilevered Retaining Wall

DESCRIPTION: 10' CANT'D WALL @ SLAB

Summary of Overturning \& Resisting Forces \& Moments

If seismic is included, the OTM and sliding ratios may be 1.1 per section 1807.2.3 of IBC

Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance.

	Force lbs	SISTING..... Distance ft	Moment ft-\#
Soil Over HL (ab. water tbl)	3,116.7	3.58	11,168.1
Soil Over HL (bel. water tbl)		3.58	11,168.1
Water Table			
Sloped Soil Over Heel =			
Surcharge Over Heel =			
Adjacent Footing Load =			
Axial Dead Load on Stem =			
* Axial Live Load on Stem =			
Soil Over Toe =			
Surcharge Over Toe			
Stem Weight(s)	1,000.0	1.83	1,833.3
Earth @ Stem Transitions =			
Footing Weight	750.0	2.50	1,875.0
Key Weight =			
Vert. Component	934.7	5.00	4,673.5
Total =	5,801.4	s R.M. $=$	19,549.9

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

| Soil Spring Reaction Modulus | 250.0 pci |
| :--- | :--- | :--- |
| Horizontal Defl @ Top of Wall (approximate only) | 0.109 in |

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

Rebar Lap \& Embedment Lengths Information

Stem Design Segment: 2nd
Stem Design Height: $\quad 4.00 \mathrm{ft}$ above top of footing

Lap Splice length for \#5 bar specified in this stem design segment (25.4.2.3a) =
23.40 in

Development length for \#5 bar specified in this stem design segment =
18.00 in

Stem Design Segment: Bottom
Stem Design Height: 0.00 ft above top of footing

Lap Splice length for \#5 bar specified in this stem design segment $(25.4 .2 .3 \mathrm{a})=$	23.40 in
Development length for \#5 bar specified in this stem design segment $=$	18.00 in
Hooked embedment length into footing for \#5 bar specified in this stem design segment $=$	8.36 in
As Provided $=$	$0.6200 \mathrm{in} 2 / \mathrm{ft}$
As Required $=$	$0.4937 \mathrm{in} 2 / \mathrm{ft}$

Cantilevered Retaining Wall

Cantilevered Retaining Wall

Cantilevered Retaining Wall

DESCRIPTION: 10.67' CANT'D WALL @ SLAB
Code Reference.
Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

Criteria		
Retained Height	$=10.67 \mathrm{ft}$	
Wall height above soil	$=$	0.00 ft
Slope Behind Wall	$=$	0.00
Height of Soil over Toe	$=$	0.00 in
Water table above bottom of footing $=$ 0.0 ft		

Surcharge Loads

Surcharge Over Heel $=$	0.0 psf
Used To Resist Sliding \& Overturning	
Surcharge Over Toe $=$	0.0 psf
Used for Sliding \& Overturning	

Axial Load Applied to Stem

Axial Dead Load	$=$	0.0 lbs
Axial Live Load	$=$	0.0 lbs
Axial Load Eccentricity	$=$	0.0 in

Earth Pressure Seismic Load
Method: Uniform
Multiplier Used $=8.000$
(Multiplier used on soil density)
(Multiplier used on soil density)

Soil Data		
Allow Soil Bearing	000.0 psf	
Equivalent Fluid Pressure Method		
Active Heel Pressure	35.0 psf/ft	
	=	
Passive Pressure	250.0 psf/ft	
Soil Density, Heel	$=110.00 \mathrm{pcf}$	
Soil Density, Toe	110.00 pcf	
Footing\|	Soil Friction	$=0.400$
Soil height to ignore for passive pressure	$=12.00 \mathrm{in}$	

Lateral Load Applied to Stem

Lateral Load	$=$	$0.0 \mathrm{\#} / \mathrm{ft}$
\ldots Height to Top	$=$	0.00 ft
\ldots Height to Bottom	$=$	0.00 ft
Load Type	$=$	Wind (W)
	(Service Level)	
Wind on Exposed Stem	$=$	0.0 psf
(Strength Level)		

Adjacent Footing Load		
Adjacent Footing Load	$=$	0.0 lbs
Footing Width	$=$	0.00 ft
Eccentricity	$=$	0.00 in
Wall to Ftg CL Dist	$=$	0.00 ft
Footing Type		Spread Footing
Base Above/Below Soil $=$ 0.0 ft at Back of Wall $=$ 0.300.		

| Uniform Seismic Force | $=93.360$ |
| :--- | :--- | ---: |
| Total Seismic Force | $=1,089.511$ |

Cantilevered Retaining Wall

DESCRIPTION: 10.67' CANT'D WALL @ SLAB

Cantilevered Retaining Wall

DESCRIPTION: 10.67' CANT'D WALL @ SLAB

Concrete Stem Rebar Area Details

2nd Stem	Vertical Reinforcing
As (based on applied moment) :	0.1742 in2/ft
(4/3) * As :	0.2323 in2/ft
200bd/fy : 200(12)(6.5)/60000	0.26 in2/ft
0.0018bh : 0.0018(12)(8)	0.1728 in2/ft
Required Area	$0.2323 \mathrm{in} 2 / \mathrm{ft}$
Provided Area :	$0.31 \mathrm{in} 2 / \mathrm{ft}$
Maximum Area :	$0.8805 \mathrm{in} 2 / \mathrm{ft}$
Bottom Stem	Vertical Reinforcing
As (based on applied moment) :	0.5987 in2/ft
(4/3) * As :	0.7982 in2/ft
200bd/fy : 200(12)(6.5)/60000	0.26 in2/ft
0.0018bh : 0.0018(12)(8) :	0.1728 in2/ft
Required Area :	$0.5987 \mathrm{in} 2 / \mathrm{ft}$
Provided Area :	0.88 in2/ft
Maximum Area :	0.8805 in2/ft

Horizontal Reinforcing
Min Stem T\&S Reinf Area 1.281 in2
Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft
Horizontal Reinforcing Options :
One layer of : \quad Two layers of :
\#4@ 12.50 in \quad \#4@ 25.00 in
\#5@ 19.38 in
\#6@ 27.50 in
\#68.75 in
\#6@ 55.00 in

Horizontal Reinforcing

Min Stem T\&S Reinf Area 0.768 in2
Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft Horizontal Reinforcing Options :

One layer of :	Two layers of :
\#4@ 12.50 in	\#4@ 25.00 in
\#5@ 19.38 in	\#5@ 38.75 in
\#6@ 27.50 in	\#6@ 55.00 in

If torsion exceeds allowable, provide supplemental design for footing torsion.

Other Acceptable Sizes \& Spacings

Toe: \#4@ 9.25 in , \#5@ 14.35 in, \#6@ 20.37 in, \#7@ 27.77 in, \#8@ 36.57 in , \#9@ 46.29 in, \#10@ 58.79 in

Heel: \#4@ 7.06 in, \#5@ 10.95 in, \#6@ 15.54 in, \#7@ 21.19 in, \#8@ 27.90 in, \#9@ 35.32 in, \#10@ 44.86 in

Key: No key defined

Min footing T\&S reinf Area Min footing T\&S reinf Area per foot	$1.43 \quad$ in2 $0.26 \quad$ in2 ft
If one layer of horizontal bars:	If two layers of horizontal bars:
\#4@ 9.26 in	\#4@ 18.52 in
\#5@ 14.35 in	\#5@ 28.70 in
\#6@ 20.37 in	\#6@40.74 in

Cantilevered Retaining Wall

DESCRIPTION: 10.67' CANT'D WALL @ SLAB

Summary of Overturning \& Resisting Forces \& Moments

Item	Force lbs	RTURNIN Distance ft	
HL Act Pres (ab water tbl)	2,383.3	3.89	9
HL Act Pres (be water tbl)			
Hydrostatic Force			
Buoyant Force			
Surcharge over Heel			
Surcharge Over Toe			
Adjacent Footing Load			
Added Lateral Load			
Load @ Stem Above Soil			
Seismic Earth Load	762.7	5.84	4
Total	3,146.0	O.T.M.	13
Resisting/Overturning		$=$	1.82
Vertical Loads used for	Pressure	6,85	4 lbs

If seismic is included, the OTM and sliding ratios may be 1.1 per section 1807.2.3 of IBC

Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance.

	Force lbs	ISTING..... Distance ft	Moment ft-\#
Soil Over HL (ab. water tbl)	3,912.3	3.83	14,997.3
Soil Over HL (bel. water tbl)		3.83	14,997.3
Water Table			
Sloped Soil Over Heel =			
Surcharge Over Heel =			
Adjacent Footing Load =			
Axial Dead Load on Stem =			
* Axial Live Load on Stem =			
Soil Over Toe =			
Surcharge Over Toe			
Stem Weight(s) =	1,067.0	1.83	1,956.2
Earth @ Stem Transitions =			
Footing Weight	825.0	2.75	2,268.8
Key Weight			
Vert. Component	1,052.0	5.50	5,786.2
Total =	6,856.4	s R.M. =	25,008.4

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus	250.0	pci
Horizontal Defl @ Top of Wall (approximate only)	0.107 in	

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe, because the wall would then tend to rotate into the retained soil.

Cantilevered Retaining Wall

LIC\# : KW-06017913, Build:20.23.04.05 MULHERN \& KULP STRUCTURAL ENGINEERING INC
(c) ENERCALC INC 1983-2023

DESCRIPTION: 10.67' CANT'D WALL @ SLAB

Rebar Lap \& Embedment Lengths Information

Stem Design Segment: 2nd
Stem Design Height: $\quad 4.00 \mathrm{ft}$ above top of footing

Lap Splice length for \#5 bar specified in this stem design segment (25.4.2.3a) =
23.40 in

Development length for \#5 bar specified in this stem design segment =
18.00 in

Stem Design Segment: Bottom
Stem Design Height: 0.00 ft above top of footing

Lap Splice length for \#6 bar specified in this stem design segment (25.4.2.3a) = 28.08 in
Development length for \#6 bar specified in this stem design segment =
21.60 in

Hooked embedment length into footing for \#6 bar specified in this stem design segment =
8.57 in

As Provided =
$0.8800 \mathrm{in} 2 / \mathrm{ft}$
As Required =

Cantilevered Retaining Wall

LIC\# : KW-06017913, Build:20.23.04.05 MULHERN \& KULP STRUCTURAL ENGINEERING INC
(c) ENERCALC INC 1983-2023

DESCRIPTION: 10.67' CANT'D WALL @ SLAB

Cantilevered Retaining Wall

Cantilevered Retaining Wall

DESCRIPTION: 9' CANT'D WALL @ GRADE

Code Reference

Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

Criteria		
Retained Height	$=$	9.00 ft
Wall height above soil	$=$	1.50 ft
Slope Behind Wall	$=$	0.00
Height of Soil over Toe	$=30.00 \mathrm{in}$	
Water table above bottom of footing $=$ 0.0 ft		

Surcharge Loads

Surcharge Over Heel $=$	0.0 psf
Used To Resist Sliding \& Overturning	
Surcharge Over Toe $=$	0.0 psf
Used for Sliding \& Overturning	

Axial Load Applied to Stem

Axial Dead Load	$=$	0.0 lbs
Axial Live Load	$=$	0.0 lbs
Axial Load Eccentricity	$=$	0.0 in

Earth Pressure Seismic Load

Method: Uniform
Multiplier Used $=8.000$
(Multiplier used on soil density)

Soil Data		
Allow Soil Bearing	1,500.0 psf	
Equivalent Fluid Pressure Method		
Active Heel Pressure	$=35.0 \mathrm{psf} / \mathrm{ft}$	
	=	
Passive Pressure	$=250.0 \mathrm{psf} / \mathrm{ft}$	
Soil Density, Heel	$=110.00 \mathrm{pcf}$	
Soil Density, Toe	$=110.00 \mathrm{pcf}$	
Footing\|	Soil Friction	$=0.400$
Soil height to ignore for passive pressure	$=12.00 \mathrm{in}$	

Lateral Load Applied to Stem

Lateral Load	$=$	$0.0 \mathrm{\#} / \mathrm{ft}$
\ldots Height to Top	$=$	0.00 ft
\ldots Height to Bottom	$=$	0.00 ft
Load Type	$=$	Wind (W)
		$($ Service Level $)$
Wind on Exposed Stem		0.0 psf
(Strength Level)		

Adjacent Footing Load

Adjacent Footing Load	$=$	0.0 lbs
Footing Width	$=$	0.00 ft
Eccentricity	$=$	0.00 in
Wall to Ftg CL Dist	$=$	0.00 ft
Footing Type		Spread Footing
Base Above/Below Soil 0.0 ft \quad at Back of Wall 0.300Poisson's Ratio $=$		

| Uniform Seismic Force | $=80.000$ |
| :--- | ---: | ---: |
| Total Seismic Force | $=800.000$ |

Cantilevered Retaining Wall

DESCRIPTION: 9' CANT'D WALL @ GRADE

Cantilevered Retaining Wall

DESCRIPTION: 9' CANT'D WALL @ GRADE

Concrete Stem Rebar Area Details

2nd Stem	Vertical Reinforcing
As (based on applied moment) :	0.0779 in2/ft
(4/3) * As :	0.1039 in2/ft
200bd/fy : 200(12)(6.5)/60000	0.26 in2/ft
0.0018bh : 0.0018(12)(8) :	0.1728 in2/ft
Required Area	0.1728 in2/ft
Provided Area :	0.2325 in2/ft
Maximum Area	0.8805 in2/ft
Bottom Stem	Vertical Reinforcing
As (based on applied moment) :	0.3611 in2/ft
(4/3) * As :	0.4815 in2/ft
200bd/fy : 200(12)(6.5)/60000	0.26 in2/ft
0.0018bh : 0.0018(12)(8) :	0.1728 in2/ft
Required Area	$0.3611 \mathrm{in} 2 / \mathrm{ft}$
Provided Area :	0.465 in2/ft
Maximum Area :	0.8805 in2/ft

Horizontal Reinforcing
Min Stem T\&S Reinf Area 1.248 in2
Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft
Horizontal Reinforcing Options :
One layer of : \quad Two layers of :
\#4@ 12.50 in \quad \#4@ 25.00 in
\#5@ 19.38 in

\#5@ 38.75 in	
\#6 27.50 in	\#6@ 55.00 in

Horizontal Reinforcing

Min Stem T\&S Reinf Area 0.768 in2
Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft
Horizontal Reinforcing Options :
One layer of: Two layers of :
\#4@ 12.50 in \#4@ 25.00 in
\#5@ 19.38 in \#5@ 38.75 in
\#6@ 27.50 in \#6@ 55.00 in

Footing Data	
Toe Width	1.50 ft
Heel Width	3.00
Total Footing Width	4.50
Footing Thickness	12.00 in
Key Width	0.00 in
Key Depth	0.00 in
Key Distance from Toe	0.00 ft
$\mathrm{f}^{\prime} \mathrm{C}=2, \quad 2,500 \mathrm{psi}$	$\mathrm{Fy}=\quad 60,000 \mathrm{psi}$
Footing Concrete Density	$=150.00 \mathrm{pcf}$
Min. As \%	0.0018
Cover @ Top 2.00	@ Btm. $=3.00$ in

Footing Design Results

If torsion exceeds allowable, provide supplemental design for footing torsion.

Other Acceptable Sizes \& Spacings
Toe: phiMn = phi*5*lambda*sqrt(fc)*Sm

Heel: \#4@ 9.25 in, \#5@ 14.35 in, \#6@ 20.37 in, \#7@ 27.77 in, \#8@ 36.57 in, \#9@ $46.29 \mathrm{in}, \# 10 @ 58.79$ in
Key: No key defined

Min footing T\&S reinf Area	$1.17 \quad$ in2 Min footing T\&S reinf Area per foot $0.26 \quad$ in2 ft
If one layer of horizontal bars:	If two layers of horizontal bars:
\#4@ 9.26 in	\#4@ 18.52 in
\#5@ 14.35 in	\#5@ 28.70 in
\#6@ 20.37 in	\#6@ 40.74 in

Cantilevered Retaining Wall

DESCRIPTION: 9' CANT'D WALL @ GRADE

Summary of Overturning \& Resisting Forces \& Moments

	Force lbs	ISTING..... Distance ft	Moment ft-\#
Soil Over HL (ab. water tbl)	2,310.0	3.33	7,700.0
Soil Over HL (bel. water tbl)		3.33	7,700.0
Water Table			
Sloped Soil Over Heel =			
Surcharge Over Heel			
Adjacent Footing Load =			
Axial Dead Load on Stem =			
* Axial Live Load on Stem =			
Soil Over Toe	412.5	0.75	309.4
Surcharge Over Toe			
Stem Weight(s)	1,050.0	1.83	1,925.0
Earth @ Stem Transitions =			
Footing Weight	675.0	2.25	1,518.8
Key Weight			
Vert. Component	772.5	4.50	3,476.2
Total =	5,220.0	R.M. $=$	14,929.3
* Axial live load NOT included resistance, but is included for	tal display pressure	or used f culation.	rturning

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Vertical component of active lateral soil pressure IS considered in the Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus	250.0	pci
Horizontal Defl @ Top of Wall (approximate only)	0.136 in	

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,
because the wall would then tend to rotate into the retained soil.

Rebar Lap \& Embedment Lengths Information

Stem Design Segment: 2nd
Stem Design Height: $\quad 4.00 \mathrm{ft}$ above top of footing

Lap Splice length for \#5 bar specified in this stem design segment $(25.4 .2 .3 a)=$	23.40 in
Development length for \#5 bar specified in this stem design segment $=$	18.00 in

Stem Design Segment: Bottom
Stem Design Height: 0.00 ft above top of footing

Lap Splice length for \#5 bar specified in this stem design segment (25.4.2.3a) =
23.40 in

Development length for \#5 bar specified in this stem design segment =
Hooked embedment length into footing for \#5 bar specified in this stem design segment =
8.15 in

As Provided =
$0.4650 \mathrm{in} 2 / \mathrm{ft}$
As Required =
$0.3611 \mathrm{in} 2 / \mathrm{ft}$

Cantilevered Retaining Wall

Cantilevered Retaining Wall

Cantilevered Retaining Wall

DESCRIPTION: 9' CANT'D WALL @ SLAB

Code Reference

Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

Criteria		
Retained Height	$=$	9.00 ft
Wall height above soil	$=$	1.00 ft
Slope Behind Wall	$=$	0.00
Height of Soil over Toe	$=$	12.00 in
Water table above bottom of footing $=$ 0.0 ft		

Surcharge Loads

Surcharge Over Heel $=$	0.0 psf
Used To Resist Sliding \& Overturning	
Surcharge Over Toe $=$	0.0 psf
Used for Sliding \& Overturning	

Axial Load Applied to Stem

Axial Dead Load	$=$	0.0 lbs
Axial Live Load	$=0.0 \mathrm{lbs}$	
Axial Load Eccentricity	$=$	0.0 in

Earth Pressure Seismic Load

Method : Uniform
Multiplier Used $=8.000$
(Multiplier used on soil density)

Soil Data		
Allow Soil Bearing	1,500.0 psf	
Equivalent Fluid Pressure Method		
Active Heel Pressure	$=35.0 \mathrm{psf} / \mathrm{ft}$	
	=	
Passive Pressure	$=250.0 \mathrm{psf} / \mathrm{ft}$	
Soil Density, Heel	$=110.00 \mathrm{pcf}$	
Soil Density, Toe	$=110.00 \mathrm{pcf}$	
Footing\|	Soil Friction	$=0.400$
Soil height to ignore for passive pressure	$=12.00 \mathrm{in}$	

Lateral Load Applied to Stem

Lateral Load	$=$	$0.0 \mathrm{\#} / \mathrm{ft}$
..Height to Top	$=$	0.00 ft
..Height to Bottom	$=$	0.00 ft
Load Type	$=$	Wind (W)
		(Service Level)
Wind on Exposed Stem	$=$	0.0 psf
(Strength Level)		

Adjacent Footing Load

Adjacent Footing Load	$=$	0.0 lbs
Footing Width	$=$	0.00 ft
Eccentricity	$=$	0.00 in
Wall to Ftg CL Dist	$=$	0.00 ft
Footing Type		Spread Footing
Base Above/Below Soil $=$ 0.0 ft \quad at Back of Wall 0.300Poisson's Ratio		

$$
\begin{array}{llr}
\text { Uniform Seismic Force } & =80.000 \\
\text { Total Seismic Force } & =800.000
\end{array}
$$

Cantilevered Retaining Wall

DESCRIPTION: 9' CANT'D WALL @ SLAB

Cantilevered Retaining Wall

DESCRIPTION: 9' CANT'D WALL @ SLAB

Concrete Stem Rebar Area Details

2nd Stem	Vertical Reinforcing
As (based on applied moment) :	0.0779 in2/ft
(4/3) * As :	$0.1039 \mathrm{in} 2 / \mathrm{ft}$
200bd/fy : 200(12)(6.5)/60000	0.26 in2/ft
0.0018bh : 0.0018(12)(8)	0.1728 in2/ft
Required Area	0.1728 in2/ft
Provided Area :	0.2325 in2/ft
Maximum Area	$0.8805 \mathrm{in} 2 / \mathrm{ft}$
Bottom Stem	Vertical Reinforcing
As (based on applied moment) :	0.3611 in2/ft
(4/3) * As :	$0.4815 \mathrm{in} 2 / \mathrm{ft}$
200bd/fy : 200(12)(6.5)/60000	0.26 in2/ft
0.0018bh : 0.0018(12)(8)	0.1728 in2/ft
Required Area	0.3611 in2/ft
Provided Area	$0.465 \mathrm{in} 2 / \mathrm{ft}$
Maximum Area :	$0.8805 \mathrm{in} 2 / \mathrm{ft}$

Horizontal Reinforcing
Min Stem T\&S Reinf Area 1.152 in2
Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft
Horizontal Reinforcing Options :
One layer of : \quad Two layers of :
\#4@ 12.50 in \quad \#4@ 25.00 in
\#5@ 19.38 in
\#6@ 27.50 in

Horizontal Reinforcing

Min Stem T\&S Reinf Area 0.768 in2
Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft
Horizontal Reinforcing Options :
One layer of: Two layers of:
\#4@ 12.50 in \#4@ 25.00 in
\#5@ 19.38 in \#5@ 38.75 in
\#6@ 27.50 in \#6@ 55.00 in

Toe Width	=	1.50 ft
Heel Width	=	3.00
Total Footing Width	=	4.50
Footing Thickness	=	12.00 in
Key Width	=	0.00 in
Key Depth	=	0.00 in
Key Distance from Toe	=	0.00 ft
$\mathrm{f}^{\prime} \mathrm{c}=\quad 2,500 \mathrm{psi}$	Fy =	$60,000 \mathrm{psi}$
Footing Concrete Density		150.00 pcf
Min. As \%	=	0.0018
Cover @ Top 2.00		m. $=3.00$ in

Footing Design Results

	Toe	Heel	
Factored Pressure	2,671	0 psf	
Mu' : Upward	$=2,659$	1,066 ft-\#	
Mu' : Downward	= 351	6,608 ft-\#	
Mu: Design	2,308 OK	5,542 ft-\#	OK
phiMn	2,500	13,005 ft-\#	
Actual 1-Way Shear	$=13.67$	26.00 psi	
Allow 1-Way Shear	$=40.00$	75.00 psi	
Toe Reinforcing	= None Spec'd		
Heel Reinforcing	= \# 5 @ 12.00 in		
Key Reinforcing	= None Spec'd		
Footing Torsion, Tu	=	0.00 ft -lbs	
Footing Allow. Torsion	, phi Tu	$0.00 \mathrm{ft-lbs}$	
If torsion exceeds allowable, provide supplemental design for footing torsion.			
Other Acceptable Sizes \& Spacings			
Toe: $\mathrm{phiMn}=$ phi*5*lambda*sqrt(fc)			

Heel: \#4@ 9.25 in, \#5@ 14.35 in, \#6@ 20.37 in, \#7@ 27.77 in, \#8@ 36.57 in, \#9@ 46.29 in, \#10@ 58.79 in

Key: No key defined

Min footing T\&S reinf Area	1.17 Min footing T\&S reinf Area per foot Min If one layer of horizontal bars:
\#4@ 9.26 in if two layers of horizontal bars: \#5@ 14.35 in \#4@ 18.52 in \#6@ 20.37 in \#5@ 28.70 in \#6@ 40.74 in.	

Cantilevered Retaining Wall

DESCRIPTION: 9' CANT'D WALL @ SLAB

Summary of Overturning \& Resisting Forces \& Moments

	Force lbs	ISTING..... Distance ft	Moment ft-\#
Soil Over HL (ab. water tbl)	2,310.0	3.33	7,700.0
Soil Over HL (bel. water tbl)		3.33	7,700.0
Water Table			
Sloped Soil Over Heel =			
Surcharge Over Heel			
Adjacent Footing Load =			
Axial Dead Load on Stem =			
* Axial Live Load on Stem =			
Soil Over Toe	165.0	0.75	123.8
Surcharge Over Toe			
Stem Weight(s) =	1,000.0	1.83	1,833.3
Earth @ Stem Transitions =			
Footing Weight	675.0	2.25	1,518.8
Key Weight =			
Vert. Component	772.5	4.50	3,476.2
Total $=$	4,922.5	s R.M. $=$	14,652.0

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus	250.0	pci
Horizontal Defl @ Top of Wall (approximate only)	0.118 in	

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,
because the wall would then tend to rotate into the retained soil.

DESCRIPTION: 9' CANT'D WALL @ SLAB

Rebar Lap \& Embedment Lengths Information

Stem Design Segment: 2nd
Stem Design Height: $\quad 4.00 \mathrm{ft}$ above top of footing

Lap Splice length for \#5 bar specified in this stem design segment (25.4.2.3a) $=$	23.40 in
Development length for \#5 bar specified in this stem design segment $=$	18.00 in

Stem Design Segment: Bottom
Stem Design Height: 0.00 ft above top of footing

Lap Splice length for \#5 bar specified in this stem design segment (25.4.2.3a) =
23.40 in

Development length for \#5 bar specified in this stem design segment =
18.00 in

Hooked embedment length into footing for \#5 bar specified in this stem design segment =
8.15 in

As Provided =
0.4650 in2/ft

As Required =
0.3611 in2/ft

Cantilevered Retaining Wall

Project File: fnd.ec $€$
LIC\#: KW-06017913, Build:20.23.04.05 MULHERN \& KULP STRUCTURAL ENGINEERING INC
(c) ENERCALC INC 1983-2023

Cantilevered Retaining Wall

Cantilevered Retaining Wall

DESCRIPTION: 8' CANT'D WALL @ GARAGE

Code Reference.

Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

Criteria	
Retained Height	$=8.00 \mathrm{ft}$
Wall height above soil	$=$
Slope Behind Wall	$=00 \mathrm{ft}$
Height of Soil over Toe	$=0.00$
Water table above bottom of footing$=0.00 \mathrm{in}$	

Surcharge Loads

Surcharge Over Heel $=$	0.0 psf
Used To Resist Sliding \& Overturning	
Surcharge Over Toe $=$	0.0 psf
Used for Sliding \& Overturning	

Axial Load Applied to Stem

Axial Dead Load	$=$	0.0 lbs
Axial Live Load	$=$	0.0 lbs
Axial Load Eccentricity	$=$	0.0 in

Earth Pressure Seismic Load
Method : Uniform $=8.000$
Multiplier Used
(Multiplier used on soil density)
(Multiplier used on soil density)

Soil Data		
Allow Soil Bearing	000.0 psf	
Equivalent Fluid Pressure Method		
Active Heel Pressure	$=35.0 \mathrm{psf} / \mathrm{ft}$	
	=	
Passive Pressure	250.0 psf/ft	
Soil Density, Heel	$=110.00 \mathrm{pcf}$	
Soil Density, Toe	110.00 pcf	
Footing\|	Soil Friction	$=0.400$
Soil height to ignore for passive pressure	$=12.00 \mathrm{in}$	

Lateral Load Applied to Stem

Lateral Load	$=$	$0.0 \mathrm{\#} / \mathrm{ft}$
\ldots Height to Top	$=$	0.00 ft
\ldots Height to Bottom	$=$	0.00 ft
Load Type	$=$	Wind (W)
	(Service Level)	
Wind on Exposed Stem	$=$	0.0 psf
(Strength Level)		

Adjacent Footing Load		
Adjacent Footing Load	$=$	0.0 lbs
Footing Width	$=$	0.00 ft
Eccentricity	$=$	0.00 in
Wall to Ftg CL Dist	$=$	0.00 ft
Footing Type		Spread Footing
Base Above/Below Soil $=$ 0.0 ft at Back of Wall $=$ 0.300.		

| Uniform Seismic Force | $=72.000$ |
| :--- | ---: | ---: |
| Total Seismic Force | $=648.000$ |

Cantilevered Retaining Wall

DESCRIPTION: 8' CANT'D WALL @ GARAGE

Cantilevered Retaining Wall

DESCRIPTION: 8' CANT'D WALL @ GARAGE

Concrete Stem Rebar Area Details

2nd Stem	Vertical Reinforcing
As (based on applied moment) :	0.0422 in2/ft
(4/3) * As :	0.0562 in2/ft
200bd/fy : 200(12)(6.5)/60000 :	$0.26 \mathrm{in} 2 / \mathrm{ft}$
0.0018bh : 0.0018(12)(8) :	0.1728 in2/ft
Required Area :	$0.1728 \mathrm{in} 2 / \mathrm{ft}$
Provided Area :	0.2325 in2/ft
Maximum Area :	$0.8805 \mathrm{in} 2 / \mathrm{ft}$
Bottom Stem	Vertical Reinforcing
As (based on applied moment) :	0.2546 in2/ft
(4/3) * As :	0.3395 in2/ft
200bd/fy : 200(12)(6.5)/60000 :	0.26 in2/ft
0.0018bh : 0.0018(12)(8) :	0.1728 in2/ft
Required Area :	$0.26 \mathrm{in} 2 / \mathrm{ft}$
Provided Area :	0.465 in2/ft
Maximum Area :	$0.8805 \mathrm{in} 2 / \mathrm{ft}$

Horizontal Reinforcing
Min Stem T\&S Reinf Area 0.768 in2
Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft
Horizontal Reinforcing Options :
One layer of : \quad Two layers of :
\#4@ 12.50 in \quad \#4@ 25.00 in
\#5@ 19.38 in \quad \#5@ 38.75 in
\#6@ 27.50 in \quad \#6@ 55.00 in

Horizontal Reinforcing

Min Stem T\&S Reinf Area 0.768 in2
Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft Horizontal Reinforcing Options :

One layer of :	Two layers of :
\#4@ 12.50 in	\#4@ 25.00 in
\#5@ 19.38 in	\#5@ 38.75 in
\#6@ 27.50 in	\#6@ 55.00 in

If torsion exceeds allowable, provide supplemental design for footing torsion.

Other Acceptable Sizes \& Spacings
Toe: phiMn $=$ phi*5*lambda*sqrt(fc)*Sm

Heel: \#4@9.25 in, \#5@ 14.35 in, \#6@ 20.37 in, \#7@ 27.77 in, \#8@ 36.57 in, \#9@ 46.29 in, \#10@ 58.79 in

Key: No key defined

Min footing T\&S reinf Area	$1.04 \quad$ in2 Min footing T\&S reinf Area per foot If one layer of horizontal bars:
\#4@ 9.26 in If two layers of horizontal bars: \#5@ 14.35 in \#4@ 18.52 in \#6@ 20.37 in \#5@ 28.70 in \#6@ 40.74 in	

Cantilevered Retaining Wall

DESCRIPTION: 8' CANT'D WALL @ GARAGE

Summary of Overturning \& Resisting Forces \& Moments

Item	\qquad Force lbs	RTURNIN Distance ft	Moment ft-\#
HL Act Pres (ab water tbl)	1,417.5	3.00	4,252.5
HL Act Pres (be water tbl)			
Hydrostatic Force			
Buoyant Force			
Surcharge over Heel			
Surcharge Over Toe			
Adjacent Footing Load			
Added Lateral Load			
Load @ Stem Above Soil			
Seismic Earth Load	453.6	4.50	2,041.2
Total	1,871.1	O.T.M.	6,293.7

Resisting/Overturning Ratio	$=$	$\mathbf{1 . 6 1}$
Vertical Loads used for Soil Pressure $=$	$3,639.0 \mathrm{lbs}$	

If seismic is included, the OTM and sliding ratios may be 1.1 per section 1807.2.3 of IBC.
Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance.

	Force lbs	ISTING..... Distance ft	Moment ft-\#
Soil Over HL (ab. water tbl)	1,613.3	3.08	4,974.4
Soil Over HL (bel. water tbl)		3.08	4,974.4
Water Table			
Sloped Soil Over Heel =			
Surcharge Over Heel			
Adjacent Footing Load =			
Axial Dead Load on Stem =			
* Axial Live Load on Stem =			
Soil Over Toe			
Surcharge Over Toe			
Stem Weight(s) =	800.0	1.83	1,466.7
Earth @ Stem Transitions =			
Footing Weight	600.0	2.00	1,200.0
Key Weight			
Vert. Component	625.7	4.00	2,502.8
Total $=$	3,639.0	R.M. $=$	10,144.0
* Axial live load NOT included resistance, but is included for	total displa il pressure	, or used fo alculation.	overturning

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

| Soil Spring Reaction Modulus | 250.0 pci |
| :--- | :--- | :--- |
| Horizontal Defl @ Top of Wall (approximate only) | 0.087 in |

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,
because the wall would then tend to rotate into the retained soil.

Cantilevered Retaining Wall	Project File: fnd.ec6
LIC\#: KW-06017913, Build:20.23.04.05	MULHERN \& KULP STRUCTURAL ENGINEERING INC
DESCRIPTION: 8' CANT'D WALL @ GARAGE	(c) ENERCALC INC 1983-2023

Rebar Lap \& Embedment Lengths Information
Stem Design Segment: 2nd
Stem Design Height: $\quad 4.00 \mathrm{ft}$ above top of footing

Lap Splice length for \#5 bar specified in this stem design segment (25.4.2.3a) =
23.40 in

Development length for \#5 bar specified in this stem design segment =
18.00 in

Stem Design Segment: Bottom
Stem Design Height: 0.00 ft above top of footing

Lap Splice length for \#5 bar specified in this stem design segment $(25.4 .2 .3 \mathrm{a})=$	23.40 in
Development length for \#5 bar specified in this stem design segment $=$	18.00 in
Hooked embedment length into footing for \#5 bar specified in this stem design segment $=$	6.00 in
As Provided $=$	$0.4650 \mathrm{in} 2 / \mathrm{ft}$
As Required $=$	$0.2600 \mathrm{in} 2 / \mathrm{ft}$

Cantilevered Retaining Wall

Cantilevered Retaining Wall

LIC\# : KW-06017913, Build:20.23.04.05 MULHERN \& KULP STRUCTURAL ENGINEERING INC
(c) ENERCALC INC 1983-2023

DESCRIPTION: 8' CANT'D WALL @ GARAGE

Cantilevered Retaining Wall

DESCRIPTION: 7' CANT'D WALL @ SLAB

Code Reference.

Calculations per IBC 2018 1807.3, CBC 2019, ASCE 7-16

Criteria		
Retained Height	$=$	6.50 ft
Wall height above soil	$=$	0.67 ft
Slope Behind Wall	$=$	0.00
Height of Soil over Toe	$=0.00 \mathrm{in}$	
Water table above bottom of footing$=0.0 \mathrm{ft}$		

Surcharge Loads

Surcharge Over Heel $=$	0.0 psf
Used To Resist Sliding \& Overturning	
Surcharge Over Toe $=$	0.0 psf
Used for Sliding \& Overturning	

Axial Load Applied to Stem

Axial Dead Load	$=$	0.0 lbs
Axial Live Load	$=$	0.0 lbs
Axial Load Eccentricity	$=$	0.0 in

Earth Pressure Seismic Load
Method: Uniform
Multiplier Used $=8.000$
(Multiplier used on soil density)
(Multiplier used on soil density)

Soil Data		
Allow Soil Bearing	000.0 psf	
Equivalent Fluid Pressure Method		
Active Heel Pressure	35.0 psf/ft	
	=	
Passive Pressure	250.0 psf/ft	
Soil Density, Heel	$=110.00 \mathrm{pcf}$	
Soil Density, Toe	110.00 pcf	
Footing\|	Soil Friction	$=0.400$
Soil height to ignore for passive pressure	$=12.00 \mathrm{in}$	

Lateral Load Applied to Stem

Lateral Load	$=$	$0.0 \mathrm{\#} / \mathrm{ft}$
\ldots Height to Top	$=$	0.00 ft
\ldots Height to Bottom	$=$	0.00 ft
Load Type	$=$	Wind (W)
	(Service Level)	
Wind on Exposed Stem	$=$	0.0 psf
(Strength Level)		

Adjacent Footing Load		
Adjacent Footing Load	$=$	0.0 lbs
Footing Width	$=$	0.00 ft
Eccentricity	$=$	0.00 in
Wall to Ftg CL Dist	$=$	0.00 ft
Footing Type		Spread Footing
Base Above/Below Soil $=$ 0.0 ft at Back of Wall $=$ 0.300.		

Uniform Seismic Force	$=60.000$
Total Seismic Force	$=450.000$

Cantilevered Retaining Wall

DESCRIPTION: 7' CANT'D WALL @ SLAB

Design Summary			Stem Construction	2nd		Bottom	SD	SD
			Design Height Above Ftg	$\mathrm{ft}=$	$\begin{array}{r} \text { Stem OK } \\ 4.00 \end{array}$	$\begin{gathered} \text { Stem OK } \\ 0.00 \end{gathered}$		
Wall Stability Ratios			Wall Material Above "Ht"	=	Concrete	Concrete		
Overturning		1.33 Ratio < 1.5 !	Design Method	=	SD	SD		
Slab Resists All Sliding !			Thickness	=	8.00	8.00		
Global Stability	=	1.51	Rebar Size	=	\# 5	\# 5		
			Rebar Spacing	=	16.00	16.00		
Total Bearing Load ...resultant ecc. Eccentricity ou	=	2,197 lbs	Rebar Placed at Design Data	=	6.5 in	6.5 in		
	=	9.90 in						
	Eccentricity outside middle third		fb/FB + fa/Fa	=	0.051	0.588		
Soil Pressure @ Toe	=	1,741 psf NG	Total Force @ Section					
Soil Pressure @ Heel	$=$	0 psf OK	Service Level	$\mathrm{lbs}=$				
\qquad			Strength Level Moment....Actual	$\mathrm{lbs}=$	325.0	1,573.0		
ACI Factored @ Toe	=	2,437 psf	Service Level	ft-\# =				
ACI Factored @ Heel	$=$	0 psf	Strength Level	$\mathrm{ft}-\mathrm{=}$	333.3	3,830.7		
Footing Shear @ Toe	=	11.7 psi OK	Moment.....Allowable	ft-\# =	6,513.6	6,513.6		
Footing Shear @ Heel	$=$	13.0 psi OK	Shear.....Actual		6,513.6	6,513.6		
Allowable	-	75.0 psi	Service Level	psi $=$				
Sliding Calcs	=	1,299.4 lbs	Strength Level	psi $=$	4.2	20.2		
Lateral Sliding Force			Shear.....Allowable	psi $=$	75.0	75.0		
			Anet (Masonry)	in2 =				
			Wall Weight	psf $=$	100.0	100.0		
			Rebar Depth 'd'	in =	6.50	6.50		
Vertical component of active lateral soil pressure is considered in the calculation of soil bearing pressures.			Masonry Data					
			f'm	psi $=$				
			Fs	psi $=$				
			Solid Grouting	$=$				
Load Factors			Modular Ratio ' n '	=				
Building Code			Equiv. Solid Thick.	=				
Dead Load		1.200	Masonry Block Type	$=$				
Live Load		1.600	Masonry Design Method	= ASD				
Earth, H		1.600	Concrete Data f'c					
Wind, W		1.600		psi $=$	2,500.0	2,500.0		
Seismic, E		1.000	Fy	psi $=$	60,000.0	60,000.0		

Cantilevered Retaining Wall

DESCRIPTION: 7' CANT'D WALL @ SLAB

Concrete Stem Rebar Area Details

2nd Stem	Vertical Reinforcing
As (based on applied moment) :	$0.012 \mathrm{in} 2 / \mathrm{ft}$
$(4 / 3)^{*}$ As :	$0.016 \mathrm{in} 2 / \mathrm{ft}$
200bd/fy : 200(12)(6.5)/60000 :	$0.26 \mathrm{in2} / \mathrm{ft}$
$0.0018 \mathrm{bh}: 0.0018(12)(8):$	$0.1728 \mathrm{in} 2 / \mathrm{ft}$
	$===========$
Required Area :	$0.1728 \mathrm{in} 2 / \mathrm{ft}$
Provided Area :	$0.2325 \mathrm{in} 2 / \mathrm{ft}$
Maximum Area :	$0.8805 \mathrm{in} 2 / \mathrm{ft}$
Bottom Stem	$\underline{\text { Vertical Reinforcing }}$
As (based on applied moment) :	$0.1377 \mathrm{in} 2 / \mathrm{ft}$
$(4 / 3)^{*}$ As :	$0.1836 \mathrm{in} 2 / \mathrm{ft}$
200bd/fy : 200(12)(6.5)/60000 :	$0.26 \mathrm{in2} / \mathrm{ft}$
0.0018bh : 0.0018(12)(8) :	$0.1728 \mathrm{in2/ft}$
	$===========$
Required Area :	$0.1836 \mathrm{in} 2 / \mathrm{ft}$
Provided Area :	$0.2325 \mathrm{in} 2 / \mathrm{ft}$
Maximum Area :	$0.8805 \mathrm{in} 2 / \mathrm{ft}$

Horizontal Reinforcing
Min Stem T\&S Reinf Area 0.609 in2
Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft
Horizontal Reinforcing Options :
One layer of : \quad Two layers of :
\#4@ 12.50 in \quad \#4@ 25.00 in
\#5@ 19.38 in
\#6@ 38.75 in

Horizontal Reinforcing
Min Stem T\&S Reinf Area 0.768 in2
Min Stem T\&S Reinf Area per ft of stem Height : 0.192 in2/ft Horizontal Reinforcing Options :

One layer of :	Two layers of :
\#4@ 12.50 in	\#4@ 25.00 in
\#5@ 19.38 in	\#5@ 38.75 in
\#6@ 27.50 in	\#6@ 55.00 in

Footing Data		
Toe Width	$=$	1.50 ft
Heel Width	$=$	1.50
Total Footing Width	$=$	3.00
Footing Thickness	$=$	12.00 in
Key Width	$=$	0.00 in
Key Depth	$=$	0.00 in
Key Distance from Toe	$=$	0.00 ft
f'c $=$	$2,500 \mathrm{psi}$	Fy
Fy	$60,000 \mathrm{psi}$	
Footing Concrete Density	$=$	150.00 pcf
Min. As \%	$=$	0.0018
Cover @ Top 2.00	@ Btm. $=3.00 \mathrm{in}$	

Footing Design Results			Heel	
		Toe		
Factored Pressure	$=$	2,437	0 psf	
Mu' : Upward	=	2,065	$0 \mathrm{ft}-\#$	
Mu' : Downward	$=$	203	$940 \mathrm{ft}-\mathrm{\#}$	
Mu : Design	=	1,862 OK	$940 \mathrm{ft}-\mathrm{\#}$	OK
phiMn	=	2,500	2,500 ft-\#	
Actual 1-Way Shear	=	11.75	13.00 psi	
Allow 1-Way Shear	$=$	40.00	40.00 psi	
Toe Reinforcing		None Spec'd		
Heel Reinforcing		None Spec'd		
Key Reinforcing		None Spec'd		
Footing Torsion, Tu		=	$0.00 \mathrm{ft-lbs}$	
Footing Allow. Torsion	, ph	i Tu	$0.00 \mathrm{ft}-\mathrm{lbs}$	

If torsion exceeds allowable, provide supplemental design for footing torsion.

Other Acceptable Sizes \& Spacings
Toe: phiMn $=$ phi*5*lambda*sqrt(fc)*Sm

Heel: $\mathrm{phiMn}=$ phi*5*lambda*sqrt(fc)*Sm
Key: No key defined

Min footing T\&S reinf Area Min footing T\&S reinf Area per foot	$0.78 \quad$ in2 $0.26 \quad$ in2 ft
If one layer of horizontal bars:	If two layers of horizontal bars:
\#4@ 9.26 in	\#4@ 18.52 in
\#5@ 14.35 in	\#5@ 28.70 in
\#6@ 20.37 in	\#6@ 40.74 in

Cantilevered Retaining Wall

DESCRIPTION: 7' CANT'D WALL @ SLAB

Summary of Overturning \& Resisting Forces \& Moments

Item	Force lbs	ERTURNIN Distance ft	Moment $\mathrm{ft}-\#$
HL Act Pres (ab water tbl)	984.4	2.50	2,460.9
HL Act Pres (be water tbl)			
Hydrostatic Force			
Buoyant Force			
Surcharge over Heel			
Surcharge Over Toe			
Adjacent Footing Load			
Added Lateral Load			
Load @ Stem Above Soil			
Seismic Earth Load	315.0	3.75	1,181.3
Total	1,299.4	O.T.M. =	3,642.2

Resisting/Overturning Ratio	$=$
Vertical Loads used for Soil Pressure $=$	$\mathbf{1 . 3 3}$
$2,197.4 \mathrm{lbs}$	

If seismic is included, the OTM and sliding ratios may be 1.1 per section 1807.2.3 of IBC.
Vertical component of active lateral soil pressure IS considered in the calculation of Sliding Resistance.

Vertical component of active lateral soil pressure IS considered in the calculation of Overturning Resistance.

	Force lbs	ISTING..... Distance ft	Moment ft-\#
Soil Over HL (ab. water tbl)	595.8	2.58	1,539.2
Soil Over HL (bel. water tbl)		2.58	1,539.2
Water Table			
Sloped Soil Over Heel =			
Surcharge Over Heel			
Adjacent Footing Load =			
Axial Dead Load on Stem =			
* Axial Live Load on Stem $=$			
Soil Over Toe			
Surcharge Over Toe			
Stem Weight(s) =	717.0	1.83	1,314.5
Earth @ Stem Transitions =			
Footing Weight	450.0	1.50	675.0
Key Weight			
Vert. Component	434.5	3.00	1,303.6
Total =	2,197.4	R.M. $=$	4,832.3

* Axial live load NOT included in total displayed, or used for overturning resistance, but is included for soil pressure calculation.

Tilt

Horizontal Deflection at Top of Wall due to settlement of soil

(Deflection due to wall bending not considered)

Soil Spring Reaction Modulus	250.0	pci
Horizontal Defl @ Top of Wall (approximate only)	0.116 in	

The above calculation is not valid if the heel soil bearing pressure exceeds that of the toe,
because the wall would then tend to rotate into the retained soil.

Cantilevered Retaining Wall

LIC\# : KW-06017913, Build:20.23.08.01 MULHERN \& KULP STRUCTURAL ENGINEERING INC

Rebar Lap \& Embedment Lengths Information

Stem Design Segment: 2nd
Stem Design Height: $\quad 4.00 \mathrm{ft}$ above top of footing

Lap Splice length for \#5 bar specified in this stem design segment (25.4.2.3a) =
23.40 in

Development length for \#5 bar specified in this stem design segment =

Stem Design Segment: Bottom
Stem Design Height: 0.00 ft above top of footing

Lap Splice length for \#5 bar specified in this stem design segment $(25.4 .2 .3 \mathrm{a})=$	23.40 in
Development length for \#5 bar specified in this stem design segment $=$	18.00 in
	8.29 in
Hooked embedment length into footing for \#5 bar specified in this stem design segment $=$	$0.2325 \mathrm{in} 2 / \mathrm{ft}$
As Provided $=$	$0.1836 \mathrm{in} 2 / \mathrm{ft}$

Cantilevered Retaining Wall

Project File: fnd.ec6
LIC\# : KW-06017913, Build:20.23.08.01 MULHERN \& KULP STRUCTURAL ENGINEERING INC
(c) ENERCALC INC 1983-2023

DESCRIPTION: 7' CANT'D WALL @ SLAB

8" w/ \#5 @ 16"

8" w/ \#5 @ 16"

Cantilevered Retaining Wall

LIC\# : KW-06017913, Build:20.23.08.01 MULHERN \& KULP STRUCTURAL ENGINEERING INC
(c) ENERCALC INC 1983-2023

DESCRIPTION: 7' CANT'D WALL @ SLAB

JayMARC Hames

DUBEY RESIDENCE
MERCER ISLAND，WA

Shear wall calculations－Wind
REVIEWED BY：RلZ
APRIL 27，2023

PARAMETERS：
single family hame
DESIGN WIND SPEED： 1 ロロ MPH
WIND EXPGGURE GATEGIRY：B
Seismic Design categary：D

MULHERN＋KULP
residential structural engineering
Praject Name：Dubey Residence M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：AJC
DATE：ロZ－MAY－23
WIND DESIGN SUMMARY PER AGLE 7－16

Project Name：JayMarc Homes Dubey Residence
 M\＆K PRロJECT \＃：154－23ロロ1
 ENGINEER：JCL
 DATE：27－APR－23

GHEARWALL DESIGN SUMMARY

SHEARWALL 3ロ1：3RD－REAR EXT．WALL＠PRIMARY，PRIMARY BATH，LAUNDRY

SHEARWALL PROPERTIES：

WALL HEIGHt，H	9.1		Max wall apening ht， H_{c}	5.5	FT．		
Wall Length，L	38.3	FT．	Qualifying Wall Length，L	19.7	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：
TOTAL Shear LIAD ON WALL
$\boxed{60 \square}$ Lbs ALLOWABLE SHEARWALL CAPACity
Lbs

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロSB

FASTENED W／BD NAILS AT 6＂ロ．c．PANEL EDGES \＆ 1 2＂ם．c．PANEL FIELD－EDGES BLOCKED ADEQUATE

QVERTURNING EVALUATION：

RESISTIVE DL	236
	PLF
	$40 \square$

Hald Dawn Design LaAd Haldawn capacity
 LBS

HQLD－DQWN SPECIFICATIQN
Na Haldawn Required

SHEARWALL 3ロZ：3RD－FRaNt Ext．WALL＠W．I．․

SHEARWALL PRQPERTIES：

WALL height，H	9.1	FT．	MAX WALL opening ht，Hc	$3 . \square$	FT．		
WALL Length，L	$17 . \square$	FT．	Qualifying Wall length，L	7.7	FT	Shearwall Assembly	P1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATIUN

P1－1－SIDE 7／16＂ロSB

FASTENED W／BD NAILS AT G＂ロ．C．PANEL EDGES \＆ 1 2＂ロ．C．PANEL FIELD－EDGES BLOCKED ADEQUATE

QVERTURNING EVALUATION：

Resistive DL
DL AT ENDS \quad FF WALL
\qquad 4ロロ LBS

VERTURNING MaMENT Resistive Mament

HaLD－DIWN SPECIFICATION

Na HaLDOWN REquIRED

Prouect Name：لayMARC Hames
Dubey Residence
M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23

SHEARWALL DESIGN SUMMARY

SHEARWALL 3ロ3：3RD－REAR EXt．WALL＠BATH 2

SHEARWALL PROPERTIES：

WALL height，H	9.1		Max wall apening ht， H_{c}	$2 . \square$	FT．		
WALL Length，L	16.5	FT．	Qualifying Wall Length，L	8.5	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロS日

FAStENED W／Bd NAILS AT 6＂ם．c．pANEL EdGES \＆ 1 z＂ם．c．pANEL FIELD－Edges blocked ADEQUATE

QVERTURNING EVALUATION：

RESISTIVE DL	189
	PLF
	$40 \square$

QVERtURNING Mament	5.5	－FT
Resistive Mament	19.4	K－FT

Hald Dawn Design LaAd HGLDOWN CAPACITY

HQLD－DQWN SPECIFICATIQN

Na HaLDOWN REqUIRED

SHEARWALL 3ロ4：3RD－SIDE EXT．WALL＠PRIMARY

SHEARWALL PROPERTIES：

WALL height，H	9.1	FT．	MAX WALL opening ht，Hc	2.5	FT．		
Wall Length，L	$16 . \square$	F	Qualifying Wall Length，	8.5	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロSB

fastened w／Bd NAILS at 6＂ם．c．panel edges \＆ 1 z＂ם．c．panel field－edges blocked ADEQUATE

QVERTURNING EVALUATION：

aVERTURNING MamENT Resistive Mament

Hald Dawn Design Ladd HロLDOWN CAPACITY

HaLD－DUWN SPECIFICATIGN
Na Haldown Required

Prouect Name：لayMARC Hames
Dubey Residence
M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23
SHEARWALL DESIGN SUMMARY

Shearwall 3ロ5：3rd－Frant ext．Wall＠bed 3

SHEARWALL PROPERTIES：

WALL height，H	9.1		Max wall opening ht， H_{c}	5.5	FT．		
Wall Length，L	1 ロ． 4	FT	Qualifying Wall Length，L	4.4	F	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロS日

FAStENED W／Bd NAILS AT 6＂ם．c．pANEL EdGES \＆ 1 z＂ם．c．pANEL FIELD－Edges blocked ADEQUATE

QVERTURNING EVALUATION：

Hald Dawn Design Laad HGLDOWN CAPACITY

HQLD－DOWN SPECIFICATIGN
Na Haldawn Required

SHEARWALL 3ロ6：3RD－SIDE EXt．WALL＠BED 3（LEFT）

SHEARWALL PROPERTIES：

WALL height，H	9.1		MAX WALL opening ht，He	$\square . \square$	FT．		
Wall Length，L	10.8	FT．	Qualifying Wall length，	10.8	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATIUN

P1－1－SIDE 7／16＂ロSB

FASTENED W／BD NAILS AT 6＂ロ．C．PANEL EDGES \＆ 1 2＂ロ．C．PANEL FIELD－EDGES BLOCKED ADEQUATE

QVERTURNING EVALUATION：

Resistive DL DL at ends af wall
\qquad 4ロロ LBS

VVERTURNING Mament Resistive Mament
 K－FT

Hald Dawn Design Laad HGLDOWN CApACity

HaLD－DOWN SPECIFICATION
Na Haldown Required

Prouect Name：لayMARC Hames Dubey Residence
M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23
SHEARWALL DESIGN SUMMARY

SHEARWALL 3ロ7：3RD－SIDE Ext．WALL＠BEd 2

SHEARWALL PROPERTIES：

Wall height，H	9.1	FT		$\square . \square$	FT		
Wall Length，L	15.1	FT．	Qualifying Wall Length，L	15.1	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロS日

FAStENED W／Bd NAILS AT 6＂ם．c．pANEL EdGES \＆ 1 z＂ם．c．pANEL FIELD－Edges blocked ADEQUATE

QVERTURNING EVALUATION：

RESISTIVE DL	$17 \square$
	PLF
	$40 \square$

Hald Dawn Design Laad HGLDOWN CAPACITY

HOLD－DOWN SpECIFICATION
SIMPSロN CS16 STRAP TIE（14＂END LENGTH）

SHEARWALL

\qquad \＃

SHEARWALL PROPERTIES：

WALL height，H	\＃REF！		MAX WALL－PENiNG ht，He	\＃REF！	FT．		
Wall Length，L	\＃REF！	FT．	Qualifying Wall Length，	\＃REF！	FT．	Shearwall Assembly	\＃REF！

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

| \＃REF！ |
| :---: | :---: |
| \＃REF！ |
| \＃REF！ |

QVERTURNING EVALUATION：

Project Name: Jaymarc Homes Dubey Residence
M\&K Praject \#: 154-23ロロ1

ENGINEER: JCL
DATE: 27-APR-23
GHEARWALL DESIGN SUMMARY

SHEARWALL \#

SHEARWALL PRQPERTIES:

CAPACITY EVALUATION:

Shearwall Assembly Specification
\#REF!
\#REF!
\#REF!

QVERTURNING EVALUATION:

HOLD-DOWN SPECIFICATION

\#REF!

SHEARWALL

 \#SHEARWALL PROPERTIES:

Wall height, h	\#REF!		ax wall qpening ht, ho	\#REF!	FT.		
Wall Length, L	\#REF!		qualifying wall length, L	\#REF!	FT.	Shearwall Assembly	\#REF!

CAPACITY EVALUATION:

SHEARWALL ASSEMBLY SPECIFICATION

| \#REF! |
| :---: | :---: |
| \#REF! |
| \#REF! |

QVERTURNING EVALUATION:

Project Name：Jaymarc Homes Dubey Residence
M\＆K Praject \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23
GHEARWALL DESIGN SUMMARY

SHEARWALL \＃

SHEARWALL PROPERTIES：

CAPACITY EVALUATIGN：

SHEARWALL ASSEMBLY SPECIFICATION
\＃REF！
\＃REF！
\＃REF！

QVERTURNING EVALUATION：

HOLD－DOWN SpECIFICATION

\＃REF！

SHEARWALL 3ロ8：3RD－SIDE Ext．WALL＠BEd 3（RIGHT）

SHEARWALL PROPERTIES：

WALL height，H	9.1		MAX WALL opening ht，He	$\square . \square$	FT．		
Wall Length，L	14.9	FT．	QuALifying Wall Length，	14.9	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロSB

fastened w／Bd Nails at 6＂ם．c．panel edges \＆ 1 2＂ם．c．panel field－edges blocked ADEQUATE

QVERTURNING EVALUATION：

aVERTURNING MAMENT Resistive Mament

HaLD－DOWN SPECIFICATION
Na Haldawn Required

Project Name: Jaymarc Homes Dubey Residence
M\&K Praject \#: 154-23ロロ1

ENGINEER: JCL
DATE: 27-APR-23
GHEARWALL DESIGN SUMMARY

SHEARWALL \#

SHEARWALL PRQPERTIES:

CAPACITY EVALUATION:

Shearwall Assembly Specification
\#REF!
\#REF!
\#REF!

QVERTURNING EVALUATION:

HOLD-DOWN SPECIFICATION

\#REF!

SHEARWALL

 \#SHEARWALL PROPERTIES:

Wall height, h	\#REF!		ax wall qpening ht, ho	\#REF!	FT.		
Wall Length, L	\#REF!		qualifying wall length, L	\#REF!	FT.	Shearwall Assembly	\#REF!

CAPACITY EVALUATION:

SHEARWALL ASSEMBLY SPECIFICATION

| \#REF! |
| :---: | :---: |
| \#REF! |
| \#REF! |

QVERTURNING EVALUATION:

Prouect Name：لayMARC Hames
Dubey Residence
M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23
GHEARWALL DESIGN SUMMARY

SHEARWALL 2口1：2ND－REAR Ext．WALL＠GARAGE

SHEARWALL PROPERTIES：

Wall height，H	$12 . \square$		Max wall opening ht， H_{c}	$3 . \square$	FT．		
WALL Length，L	$22 . \square$	FT．	Qualifying Wall length，L	$13 . \square$	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロS日

FAStENED W／Bd NAILS AT 6＂ם．c．pANEL EdGES \＆ 1 z＂ם．c．pANEL FIELD－Edges blocked ADEQUATE

QVERTURNING EVALUATION：

RESISTIVE DL	483
	PLF
	$80 \square$

QVERtURNING Mament	9.6	－FT
Resistive Mament	8 Br .7	K－FT

Hald Dawn Design LaAd HGLDOWN CAPACITY

HQLD－DQWN SPECIFICATIQN
Na Haldawn Required

SHEARWALL 2ロ2：2ND－REAR Ext．WALL＠Kitchen

SHEARWALL PROPERTIES：

WALL height，H	$1 \square . \square$		MAX WALL opening ht，He	$\square . \square$	FT．		
Wall Length，L	13.5	FT．	Qualifying Wall length，	13.5	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATIGN：
TOTAL SHEAR LIAD IN WALL

\[\)| BOD LBS |
| :---: | ALLOWABLE SHEARWALL CAPACITY

\]

LBS

SHEARWALL ASSEMBLY SPECIFICATIUN

P1－1－SIDE 7／16＂ロSB

FASTENED W／BD NAILS AT G＂ロ．C．PANEL EDGES \＆ 1 2＂ロ．C．PANEL FIELD－EDGES BLOCKED ADEQUATE

QVERTURNING EVALUATION：

Resistive DL DL at ends af wall
\qquad 8ロロ Lbs
aVERTURNING MamENT Resistive Mament

Hald Dawn Design Laad HGLDOWN CApACity

HaLD－DIWN SPECIFICATION
Na Haldown Required

Prouect Name：لayMARC Hames Dubey Residence
 M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23

SHEARWALL DESIGN SUMMARY

SHEARWALL 2ロ3：2ND－REAR EXt．WALL＠POWDER，BATH 1

SHEARWALL PROPERTIES：

Wall height，H	1ロ．ロ	FT	Max wall apening ht， $\mathrm{H}_{\text {c }}$	4.5	FT．		
Wall Length，L	19.7	FT．	Qualifying Wall Length，L	13.7	FT．	Shearwall Assembly	P1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

$$
\begin{aligned}
& \text { P1-1-SIDE 7/16"ロSB } \\
& \text { FASTENED } W \text { / BD NAILS AT 6"ロ.C. PANEL EDGES \& } 12 \text { "ם. } \mathrm{Z} \text {. PANEL FIELD - EDGES BLOCKED } \\
& \text { ADEQUATE }
\end{aligned}
$$

QVERTURNING EVALUATION：

RESISTIVE DL	403
	PLF
	$80 \square$

Hald Dawn Design LaAd Haldown capacity

HQLD－DQWN SPECIFICATIQN

Na HaLDOWN REqUIRED

SHEARWALL 2ロ4：2ND－FRaNt Ext．WALL＠Juniar SuIte

SHEARWALL PROPERTIES：

WALL height，H	1 ロ．ロ	FT．	MAX WALL opening ht，Hc	$5 . \square$	FT．		
Wall Length，L	2 D .4	FT．	Qualifying Wall Length，L	11.4	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロSB

FAStened w／Bd NAILS at 6＂ם．c．panel edges \＆ 1 z＂ם．c．panel field－edges blocked ADEQUATE

QVERTURNING EVALUATION：

Resistive DL DL AT ENDS ロF WALL

QVERTURNING Mament Resistive Mament

Hald Dawn Design Laad HGLDOWN CApACity

HaLD－DOWN SPECIFICATION
Na Haldown Required

Prouect Name：لayMARC Hames Dubey Residence
M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23
GHEARWALL DESIGN SUMMARY

SHEARWALL 2ロ5：2ND－SIDEINT．WALL＠GREAT RM．

SHEARWALL PROPERTIES：

WALL HEIGHt，H	$12 . \square$		Max wall apening ht， H_{c}	ㅁ．ロ	FT．		
Wall Length，L	9.6	FT．	Qualifying Wall Length，L	9.6	FT．	Shearwall Assembly	P

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロS日

 ADEQUATE

QVERTURNING EVALUATION：

RESISTIVE DL	350
	PLF
	$120 \square$

Hald Dawn Design Laad HGLDOWN CAPACITY

HQLD－DQWN SPECIFICATIQN

Na Haldawn Required

SHEARWALL ZロG：2ND－SIDE Ext．WALL＠GARAGE

SHEARWALL PROPERTIES：

WALL height，H	$12 . \square$		MAX WALL opening ht，He	$8 . \square$	FT．		
Wall Length，L	21.5	FT．	Qualifying Wall length，	18.5	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATIUN

P1－1－SIDE 7／16＂ロS日

FASTENED W／BD NAILS AT 6＂ロ．C．PANEL EDGES \＆ 1 2＂ロ．C．PANEL FIELD－EDGES BLOCKED ADEQUATE

QVERTURNING EVALUATION：

Resistive DL	315
DL At ends of wall	$12 \square$

aVERTURNING MAMENT Resistive Mament

Hald Dawn Design Laad HGLDOWN CAPACity

HaLD－DOWN SPECIFICATIGN
Na Haldown Required

Prouect Name：لayMARC Hames Dubey Residence
 M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23
SHEARWALL DESIGN SUMMARY

SHEARWALL 2ロ7：2ND－SIDE EXt．WALL＠GREAT RM．

SHEARWALL PROPERTIES：

Wall height，h	12.0		Max wall opening ht， H_{c}	ㅁ．0	FT．		
Wall Length，L	8.3	FT	Qualifying Wall Length，L	8.3	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

$$
\begin{aligned}
& \text { P1-1-SIDE 7/16"ロSB } \\
& \text { FASTENED } W \text { / BD NAILS AT 6"ロ.C. PANEL EDGES \& } 12 \text { "ם. } \mathrm{Z} \text {. PANEL FIELD - EDGES BLOCKED } \\
& \text { ADEQUATE }
\end{aligned}
$$

QVERTURNING EVALUATION：

RESISTIVE DL	160
	PLF

HQLD－DQWN SPECIFICATIQN
SIMPSロN STHD 1 4R」 HロLDロWN

SHEARWALL 2ロB：2ND－SIDE Ext．／INt．WALL＠ENTRY

SHEARWALL PRGPERTIES：

Wall height，H	$1 \square . \square$	FT．	max wall opening ht，he	ロ．ロ	FT．		
WALL Length，L	4.7	FT．	Qualifying Wall Length，L	4.7	FT	Shearwall Assembly	P3

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATIUN

```
                                    P3 - 1-SIDE 7/16" ロSB
FASTENED W/ BD NAILS AT 3"口.C. PANEL EDGES & 1 2"ם.C. PANEL FIELD - EDGES BLOCKED
                                    ADEQUATE
```

QVERTURNING EVALUATION：

VVERTURNING Mament Resistive Mament \square 5.6 K－FT

Hald Dawn Design Laad Haldawn capacity

HaLD－DOWN SPECIFICATION

SIMPSロN STHD 1 4R」 HロLDOWN

Prouect Name：لayMARC Hames Dubey Residence
 M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23
SHEARWALL DESIGN SUMMARY

SHEARWALL 2ロ9：2ND－SIDE EXt．WALL＠JUNIGR SUITE

SHEARWALL PROPERTIES：

Wall height，H	1 ロ．ロ	FT．	Max wall opening ht， H_{c}	ロ．ロ	FT．		
Wall Length，L	19.8	FT．	Qualifying Wall Length，L	19.8	FT．	Shearwall Assembly	P1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

$$
\begin{aligned}
& \text { P1-1-SIDE 7/16"ロSB } \\
& \text { FASTENED } W \text { / BD NAILS AT 6"ロ.C. PANEL EDGES \& } 12 \text { "ם. } \mathrm{Z} \text {. PANEL FIELD - EDGES BLOCKED } \\
& \text { ADEQUATE }
\end{aligned}
$$

QVERTURNING EVALUATION：

RESISTIVE DL	264
	PLF
	493

VEERTURNING MIMENT Resistive Mament

Hald Dawn Design Laad Haldawn capacity

HQLD－DQWN SPECIFICATIQN
Na Haldawn Required

SHEARWALL

21日：2nd－Side int．Wall＠Garage

SHEARWALL PROPERTIES：

WALL height，H	$1 \square . \square$	FT．	MAX WALL opening ht，Hc	$\square . \square$	FT．		
Wall Length，L	$1 \square .4$	FT．	Qualifying Wall Length，L	1 ロ． 4	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATIGN：

SHEARWALL ASSEMBLY SPECIFICATIUN

P1－1－SIDE 7／16＂ロS日

FASTENED W／BD NAILS AT G＂ロ．C．PANEL EDGES \＆ 1 2＂ロ．C．PANEL FIELD－EDGES BLDCKED ADEQUATE

QVERTURNING EVALUATION：

Resistive DL
DL At ENDS \quad af wall

$14 \square$	PLF
y	$4 \square \square$

VVERTURNING Mament
Resistive Mament

Hald Dawn Design Laad HGLDOWN CApACity

HaLD－DIWN SPECIFICATION
Na Haldawn Required

Prouect Name：لayMARC Hames Dubey Residence
 M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23
GHEARWALL DESIGN SUMMARY

SHEARWALL 1ロ1：1st－REAR EXt．WALL＠BED 3

SHEARWALL PRQPERTIES：

WALL height，H	$9 . \square$	FT	Max wall apening ht， H_{c}	$8 . \square$	FT．		
Wall Length，L	15.1	FT．	Qualifying Wall Length，L	5.6	F	Shearwall Assembly	P 1

CAPACITY EVALUATIGN：

Shearwall Assembly Specification

P1－1－SIDE 7／16＂ロS日

FASTENED W／BD NAILS AT G＂ロ．C．PANEL EDGES \＆ 1 2＂ロ．C．PANEL FIELD－EDGES BLICKED ADEQUATE

QVERTURNING EVALUATION：

Hald Dawn Design Laad HGLDOWN CAPACITY

HQLD－DQWN SPECIFICATIQN

Na Haldawn Required

SHEARWALL 1 ロZ：1st－Frant Ext Wall＠Play Rm．

SHEARWALL PROPERTIES：

WALL height，H	$9 . \square$		MAX WALL opening ht，He	$5 . \square$	FT．		
Wall Length，L	16.1	FT．	QuALifying Wall Length，	7.1	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATIUN

P1－1－SIDE 7／16＂ロS日

FAStened w／Bd NAILS AT 6＂ロ．c．PANEL EDGES \＆ 1 z＂ם．c．PANEL FIELD－EDGES BLOCKED ADEQUATE

QVERTURNING EVALUATION：

Resistive DL	448
DL At ends of wall	$12 \square$

aVERTURNING MAMENT Resistive Mament

Hald Dawn Design Laad HロLDOWN CAPACITY

HOLD－DOWN SpECIFICATION
Na Haldown required

Prouect Name：لayMARC Hames Dubey Residence
 M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23
GHEARWALL DESIGN SUMMARY

SHEARWALL $1 \square 3: 1$ st－SIDE INT WALL＠PLAY RロロM

SHEARWALL PROPERTIES：

WALL height，H	$9 . \square$	FT	Max wall apening ht， $\mathrm{H}_{\text {c }}$	$\square . \square$	FT		
WALL Length，L	9.7	FT	Qualifying Wall Length，L	9.7	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

$$
\begin{aligned}
& \text { P1-1-SIDE 7/16"ロSB } \\
& \text { FAStENED W/ BD NAILS AT 6"ロ.C. PANEL EDGES \& } 1 \text { 2"ロ.c. PANEL FIELD - EDGES BLOCKED } \\
& \text { ADEQUATE }
\end{aligned}
$$

QVERTURNING EVALUATION：

Hald Dawn Design Laad Haldawn capacity

HQLD－DQWN SPECIFICATIQN

Na Haldawn Required

SHEARWALL

 211：2nd－side int．Wall＠garage
SHEARWALL PROPERTIES：

WALL height，H	$1 \square . \square$	FT．	MAX WALL opening ht，Hc	$\square . \square$	FT．		
Wall Length，L	6.3	FT．	Qualifying Wall Length，	6.3	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATIUN

P1－1－SIDE 7／16＂ロS日

fastened w／Bd NAILS at 6＂ם．c．panel edges \＆ 1 z＂ם．c．panel field－edges blocked ADEQUATE

QVERTURNING EVALUATION：

Resistive DL	$14 \square$
DL At ends af wall	1 ロロロ

QVERTURNING MamENT Resistive Mament \square $5 . \square$ 5.4 K－FT

Hald Dawn Design Laad HOLDOWN CAPACITY

HaLD－DOWN SPECIFICATION
Na Haldown Required

Prouect Name：لayMARC Hames
 Dubey Residence
 M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23
GHEARWALL DESIGN SUMMARY

SHEARWALL 1ロ4：1st－SIDE INTWALL＠GARAGE

SHEARWALL PROPERTIES：

WALL height，H	1.5		Max wall opening ht， H_{c}	$\square . \square$	FT．		
Wall Length，L	$1 \square .3$	FT	Qualifying Wall Length，L	1 ロ． 3	F	Shearwall Assembly	P 1

CAPACITY EVALUATIGN：

SHEARWALL ASSEMBLY SPECIFICATION

$$
\begin{aligned}
& \text { P1-1-SIDE 7/16"ロSB } \\
& \text { FASTENED } W \text { / BD NAILS AT 6"ロ.C. PANEL EDGES \& } 12 \text { "ם. } \mathrm{Z} \text {. PANEL FIELD - EDGES BLOCKED } \\
& \text { ADEQUATE }
\end{aligned}
$$

QVERTURNING EVALUATION：

Resistive DL	250
DL At ends af wall	1 ロロロ

aVERTURNing Mament	1.5
Resistive Mament	K－FT
	14.1
K－FT	

Hald Dawn Design Laad Haldawn capacity

HQLD－DQWN SPECIFICATIQN

Na Haldawn Required

SHEARWALL 1 ロ5：1st－Side Int Wall＠Garage

SHEARWALL PROPERTIES：

Wall height，H	1.5	FT．	max wall opening ht，hc	ロ．\square	FT．		
WALL Length，L	6.3	FT．	qualifying Wall length，L	6.3	FT．	Shearwall Assembly	P1

CAPACITY EVALUATION：

TOTAL Shear Laid an	WALL LBS	ALLIWABLE SHEARWALL CAPACITY		
$9 \square \square$		$<$	2116	LBS

SHEARWALL ASSEMBLY SPECIFICATIUN

P1－1－SIDE 7／16＂ロSB

fastened w／Bd NAILS at 6＂ם．c．panel edges \＆ 1 z＂ם．c．panel field－edges blocked ADEQUATE

QVERTURNING EVALUATION：

VVERTURNING Mament
Resistive Mament

HaLD－DOWN SPECIFICATION
Na Haldown Required

JayMARC Hames

DUBEY RESIDENCE
MERCER ISLAND，WA

SHEAR WALL CALCLLATIロNG－SEIGMIC

REVIEWED BY：RJZ

APRIL 27，2023

SEISMIL CALEULATIDN－ASCE 7－16

Project Name：JayMarc Homes Dubey Residence
 M\＆K PRロJECT \＃：154－23ロロ1
 ENGINEER：JCL
 DATE：27－APR－23

GHEARWALL DESIGN SUMMARY

SHEARWALL 3ロ1：3RD－REAR EXT．WALL＠PRIMARY，PRIMARY BATH，LAUNDRY

SHEARWALL PROPERTIES：

WALL HEIGHt，H	9.1		Max wall apening ht， H_{c}	5.5	FT．		
Wall Length，L	38.3	FT．	Qualifying Wall Length，L	19.7	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロSB

FAStENED W／Bd NAILS AT 6＂ם．c．pANEL EdGES \＆ 1 z＂ם．c．pANEL FIELD－Edges blocked ADEQUATE

QVERTURNING EVALUATION：

RESISTIVE DL	236
	PLF
	$40 \square$

Hald Dawn Design Laad Haldawn capacity
 LBS

HQLD－DQWN SPECIFICATIQN
Na Haldawn Required

SHEARWALL 3ロZ：3RD－FRaNt Ext．WALL＠W．I．․

SHEARWALL PRQPERTIES：

Wall height，H	9.1	FT	MAX WALL opening ht，Hc	$3 . \square$	FT		
Wall Length，L	$17 . \square$	FT．	Qualifying Wall Length，L	7.7	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロSB

FASTENED W／BD NAILS AT G＂ロ．C．PANEL EDGES \＆ 1 2＂ロ．C．PANEL FIELD－EDGES BLOCKED ADEQUATE

QVERTURNING EVALUATION：

Resistive DL
DL AT ENDS \quad FF WALL
\qquad 4ロロ LBS

VERTURNING MaMENT Resistive Mament

Hald Dawn Design Ladd Haldawn capacity

HaLD－DIWN SPECIFICATION
Na Haldawn Required

Prouect Name：لayMARC Hames
Dubey Residence
M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23

SHEARWALL DESIGN SUMMARY

SHEARWALL 3ロ3：3RD－REAR EXt．WALL＠BATH 2

SHEARWALL PROPERTIES：

WALL height，H	9.1		Max wall apening ht， $\mathrm{H}_{\text {c }}$	$2 . \square$	FT．		
Wall Length，L	16.5	FT	Qualifying Wall Length，L	8.5	F	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロS日

FAStENED W／Bd NAILS AT 6＂ם．c．pANEL EdGES \＆ 1 z＂ם．c．pANEL FIELD－Edges blocked ADEQUATE

QVERTURNING EVALUATION：

RESISTIVE DL	189
	PLF
	$40 \square$

QVERTURNING MIMENT	13.7
RESISTIVE MOMENT	14.3
	K－FT

Hald Dawn Design Laad Haldawn capacity

HQLD－DQWN SPECIFICATIQN

Na HaLDOWN REQUIRED

SHEARWALL 3ロ4：3RD－SIDE EXT．WALL＠PRIMARY

SHEARWALL PROPERTIES：

WALL height，H	9.1	FT．	MAX WALL opening ht，Hc	2.5	FT．		
Wall Length，L	$16 . \square$	F	Qualifying Wall Length，	8.5	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATIUN

P1－1－SIDE 7／16＂ロSB

fastened w／Bd NAILS at 6＂ם．c．panel edges \＆ 1 z＂ם．c．panel field－edges blocked ADEQUATE

QVERTURNING EVALUATION：

aVERTURNING MamENT Resistive Mament

HaLD－DOWN SPECIFICATION
Na Haldawn Required

Prouect Name：لayMARC Hames Dubey Residence
M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23
SHEARWALL DESIGN SUMMARY

Shearwall 3ロ5：3rd－Frant ext．Wall＠bed 3

SHEARWALL PROPERTIES：

WALL height，H	9.1		Max wall opening ht， H_{c}	5.5	FT．		
Wall Length，L	1 ロ． 4	FT	Qualifying Wall Length，L	4.4	F	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロS日

FAStENED W／Bd NAILS AT 6＂ם．c．pANEL EdGES \＆ 1 z＂ם．c．pANEL FIELD－Edges blocked ADEQUATE

QVERTURNING EVALUATION：

Resistive DL	134
DL AT ENDS OF WALL	11 ロロ

QVERtURNING Mament	8.2	K－FT
Resistive Mament	8.3	K－FT

Hald Dawn Design LaAd Haldawn capacity

HQLD－DQWN SPECIFICATIQN
Na Haldawn Required

SHEARWALL 3ロG：3Rd－Side Ext．WALL＠Bed 3（Left）

SHEARWALL PROPERTIES：

WALL height，H	9.1	FT．	max wall opening ht，he	$\square . \square$	FT．		
Wall Length，L	10.8	FT．	Qualifying Wall Length，L	10.8	F	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATIUN

P1－1－SIDE 7／16＂ロSB

FAStENED W／BD NAILS AT 6＂ロ．C．PANEL EDGES \＆ 1 2＂ロ．c．PANEL FIELD－EDGES BLICKED ADEQUATE

QVERTURNING EVALUATION：

Resistive DL DL at ends af wall
\qquad 4ロロ LBS

VERTURNING MamENT Resistive Mament
 K－FT

Hald Dawn Design Laad HGLDOWN CApACity

HaLD－DOWN SPECIFICATION
Na Haldawn Required

Prouect Name：لayMARC Hames Dubey Residence
M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23
SHEARWALL DESIGN SUMMARY

SHEARWALL 3ロ7：3RD－SIDE Ext．WALL＠BEd 2

SHEARWALL PROPERTIES：

Wall height，H	9.1	FT		$\square . \square$	FT		
Wall Length，L	15.1	FT．	Qualifying Wall Length，L	15.1	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

TOTAL Shear LIad ON WALL
$220 \square$

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロSB

FASTENED W／BD NAILS AT 6＂ロ．c．PANEL EDGES \＆ 1 z＂ם．c．PANEL FIELD－EDGES BLOCKED ADEQUATE

QVERTURNING EVALUATION：

RESISTIVE DL	$17 \square$
	PLF
	$40 \square$

Hald Dawn design Laad HGLDOWN CAPACITY

HOLD－DOWN SpECIFICATION
SIMPSロN CS16 STRAP TIE（14＂END LENGTH）

SHEARWALL

\qquad \＃

SHEARWALL PROPERTIES：

WALL height，H	\＃REF！		MAX WALL－PENiNG ht，He	\＃REF！	FT．		
Wall Length，L	\＃REF！	FT．	Qualifying Wall Length，	\＃REF！	FT．	Shearwall Assembly	\＃REF！

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

| \＃REF！ |
| :---: | :---: |
| \＃REF！ |
| \＃REF！ |

QVERTURNING EVALUATION：

Project Name: Jaymarc Homes Dubey Residence
M\&K Praject \#: 154-23ロロ1

ENGINEER: JCL
DATE: 27-APR-23
GHEARWALL DESIGN SUMMARY

SHEARWALL \#

SHEARWALL PRQPERTIES:

CAPACITY EVALUATION:

Shearwall Assembly Specification
\#REF!
\#REF!
\#REF!

QVERTURNING EVALUATION:

HOLD-DOWN SPECIFICATION

\#REF!

SHEARWALL

 \#SHEARWALL PROPERTIES:

Wall height, h	\#REF!		ax wall qpening ht, ho	\#REF!	FT.		
Wall Length, L	\#REF!		qualifying wall length, L	\#REF!	FT.	Shearwall Assembly	\#REF!

CAPACITY EVALUATION:

SHEARWALL ASSEMBLY SPECIFICATION

| \#REF! |
| :---: | :---: |
| \#REF! |
| \#REF! |

QVERTURNING EVALUATION:

Project Name：Jaymarc Homes Dubey Residence
M\＆K Praject \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23
GHEARWALL DESIGN SUMMARY

SHEARWALL \＃

SHEARWALL PROPERTIES：

CAPACITY EVALUATIGN：

SHEARWALL ASSEMBLY SPECIFICATION
\＃REF！
\＃REF！
\＃REF！

QVERTURNING EVALUATION：

HOLD－DOWN SpECIFICATION

\＃REF！

SHEARWALL 3ロ8：3RD－SIDE Ext．WALL＠BEd 3（RIGHT）

SHEARWALL PROPERTIES：

WALL height，H	9.1		MAX WALL opening ht，He	$\square . \square$	FT．		
Wall Length，L	14.9	FT．	QuALifying Wall Length，	14.9	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロSB

fastened w／Bd Nails at 6＂ם．c．panel edges \＆ 1 2＂ם．c．panel field－edges blocked ADEQUATE

QVERTURNING EVALUATION：

aVERTURNING MamENT Resistive Mament

Hald Dawn Design LaAd HロLDOWN CAPACITY

Hold－down Specification
Na Haldown required

Project Name: Jaymarc Homes Dubey Residence
M\&K Praject \#: 154-23ロロ1

ENGINEER: JCL
DATE: 27-APR-23
GHEARWALL DESIGN SUMMARY

SHEARWALL \#

SHEARWALL PRQPERTIES:

CAPACITY EVALUATION:

Shearwall Assembly Specification
\#REF!
\#REF!
\#REF!

QVERTURNING EVALUATION:

HOLD-DOWN SPECIFICATION

\#REF!

SHEARWALL

 \#SHEARWALL PROPERTIES:

Wall height, h	\#REF!		ax wall qpening ht, ho	\#REF!	FT.		
Wall Length, L	\#REF!		qualifying wall length, L	\#REF!	FT.	Shearwall Assembly	\#REF!

CAPACITY EVALUATION:

SHEARWALL ASSEMBLY SPECIFICATION

| \#REF! |
| :---: | :---: |
| \#REF! |
| \#REF! |

QVERTURNING EVALUATION:

Prouect Name：لayMARC Hames
Dubey Residence
M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23
GHEARWALL DESIGN SUMMARY

SHEARWALL 2口1：2ND－REAR Ext．WALL＠GARAGE

SHEARWALL PROPERTIES：

Wall height，H	$12 . \square$		Max wall opening ht， H_{c}	$3 . \square$	FT．		
WALL Length，L	$22 . \square$	FT．	Qualifying Wall length，L	$13 . \square$	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロS日

 ADEQUATE

QVERTURNING EVALUATION：

RESISTIVE DL	483
	PLF
	$80 \square$

Hald Dawn Design Laad HOLDOWN CAPACITY

HQLD－DQWN SPECIFICATIQN
Na Haldawn Required

SHEARWALL 2ロ2：2ND－REAR Ext．WALL＠Kitchen

SHEARWALL PROPERTIES：

WALL height，H	$1 \square . \square$		MAX WALL opening ht，He	$\square . \square$	FT．		
Wall Length，L	13.5	FT．	Qualifying Wall length，	13.5	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロSB

FASTENED W／BD NAILS AT G＂ロ．C．PANEL EDGES \＆ 1 2＂ロ．C．PANEL FIELD－EDGES BLOCKED ADEQUATE

QVERTURNING EVALUATION：

Resistive DL DL at ends af wall
\qquad 8ロロ LBS

QVERTURNING Mament Resistive Mament

Hald Dawn Design Laad HGLDOWN CApACity

HOLD－DOWN SpECIFICATION
No Holdown required

Prouect Name：لayMARC Hames Dubey Residence
 M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23

SHEARWALL DESIGN SUMMARY

SHEARWALL
 2ロ3：2ND－REAR EXt．WALL＠POWDER，BATH 1

SHEARWALL PROPERTIES：

WALL HEIGHT，H	$1 \square . \square$	FT．	Max wall opening ht， H_{c} Qualifying Wall Length，L	4.5	FT．		
Wall Length，L	19.7			13.7	FT．	Shearwall Assembly	P

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロS日

FAStENED W／Bd NAILS AT 6＂ם．c．pANEL EdGES \＆ 1 z＂ם．c．pANEL FIELD－Edges blocked ADEQUATE

QVERTURNING EVALUATION：

RESISTIVE DL	403
	PLF
	$80 \square$

Hald Dawn Design LaAd HOLDOWN CAPACITY

HQLD－DQWN SPECIFICATIQN

Na Haldawn Required

SHEARWALL 2ロ4：2ND－FRINT Ext．WALL＠JUNIGR SUITE

SHEARWALL PROPERTIES：

Wall height，H	$1 \square . \square$	FT．	Max wall opening ht，hc	$5 . \square$	FT．		
WALL Length，L	2 D .4	FT．	Qualifying Wall Length，L	11.4	FT	Shearwall Assembly	P1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATIUN

P1－1－SIDE 7／16＂ロS日

fastened w／Bd NAILS at 6＂ם．c．panel edges \＆ 1 z＂ם．c．panel field－edges blocked ADEQUATE

QVERTURNING EVALUATION：

Resistive DL DL at ends af wall
\qquad 4ロロ LBS

QVERTURNING Mament Resistive Mament

Hald Dawn Design Laad HGLDOWN CApACity

HaLD－DOWN SPECIFICATION
Na Haldown Required

Prouect Name：لayMARC Hames
Dubey Residence
M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23
GHEARWALL DESIGN SUMMARY

SHEARWALL 2ロ5：2ND－SIDEINT．WALL＠GREAT RM．

SHEARWALL PROPERTIES：

WALL Height，H	$12 . \square$	FT．	Max wall apening ht， H_{c}	$\square . \square$	FT．		
WALL Length，L	9.6	FT．	Qualifying Wall Length，L	9.6	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロS日

FAStENED W／Bd NAILS AT 6＂ם．c．pANEL EdGES \＆ 1 z＂ם．c．pANEL FIELD－Edges blocked ADEQUATE

QVERTURNING EVALUATION：

RESISTIVE DL	350
	PLF
	$120 \square$

Hald Dawn Design Laad HGLDOWN CAPACITY

HQLD－DQWN SPECIFICATIQN

Na Haldawn Required

SHEARWALL ZロG：2ND－SIDE Ext．WALL＠GARAGE

SHEARWALL PROPERTIES：

WALL height，H	$12 . \square$	FT．	max wall opening ht，hc	$8 . \square$	FT．		
Wall Length，L	21.5	FT．	Qualifying Wall Length，	18.5	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATIUN

P1－1－SIDE 7／16＂ロSB

FASTENED W／BD NAILS AT 6＂ロ．C．PANEL EDGES \＆ 1 2＂ロ．C．PANEL FIELD－EDGES BLOCKED ADEQUATE

QVERTURNING EVALUATION：

Resistive DL	315
DL At ends of wall	$12 \square$

QVERTURNING MamENT Resistive Mament

Hald Dawn Design Laad HGLDOWN CAPACITY

HaLD－DOWN SPECIFICATIGN
Na Haldown Required

Prouect Name：لayMARC Hames Dubey Residence
 M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23
SHEARWALL DESIGN SUMMARY

SHEARWALL 2ロ7：2ND－SIDE EXt．WALL＠GREAT RM．

SHEARWALL PROPERTIES：

Wall height，H	$12 . \square$		Max wall apening ht， $\mathrm{H}_{\text {c }}$	ㅁ．．ㅁ	FT．		
WALL Length，L	8.3	FT	Qualifying Wall Length，L	8.3	F	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロSB

FASTENED W／BD NAILS AT 6＂ロ．C．PANEL EDGES \＆ 12 ＂ם． Z ．PANEL FIELD－EDGES BLOCKED ADEQUATE

QVERTURNING EVALUATION：

RESISTIVE DL	160
	PLF

QVERTURNING MIMENT	15.6	K－FT
RESISTIVE MIMENT	4.6	K－FT

HQLD－DGWN SPECIFICATIGN
SIMPSロN STHD 1 4R」 HロLDロWN

SHEARWALL 2ロ日：2ND－SIDE EXt．／INT．WALL＠ENTRY

SHEARWALL PROPERTIES：

Wall height，H	$1 \square . \square$	FT	Max wall opening ht，hc	ロ．\square	FT．		
Wall Length，L	4.7	FT．	Qualifying Wall Length，L	4.7	FT．	Shearwall Assembly	P3

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATIUN

```
                                    P3 - 1-SIDE 7/16" ロSB
FASTENED W/ BD NAILS AT 3"口.C. PANEL EDGES & 1 2"ם.C. PANEL FIELD - EDGES BLOCKED
                                    ADEQUATE
```

QVERTURNING EVALUATION：

RESISTIVE DL	332
	DLF
	$120 \square$

QVERTURNING MIMENT Resistive Mament

HaLD－DOWN SPECIFICATION

SIMPSロN STHD 1 4R」 HロLDOWN

Prouect Name：لayMARC Hames Dubey Residence
 M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23
SHEARWALL DESIGN SUMMARY

SHEARWALL 2ロ9：2ND－SIDE EXt．WALL＠JUNIGR SUITE

SHEARWALL PROPERTIES：

WALL height，H	$1 \square . \square$	FT	Max wall apening ht， H_{c}	$\square . \square$	FT．		
WALL Length，L	19.8	FT．	Qualifying Wall Length，L	19.8	FT．	Shearwall Assembly	P1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

$$
\begin{aligned}
& \text { P1-1-SIDE 7/16"ロSB } \\
& \text { FASTENED } W \text { / BD NAILS AT 6"ロ.C. PANEL EDGES \& } 12 \text { "ם. } \mathrm{Z} \text {. PANEL FIELD - EDGES BLOCKED } \\
& \text { ADEQUATE }
\end{aligned}
$$

QVERTURNING EVALUATION：

RESISTIVE DL	264
	PLF
	493

QVERTURNING Mament	2ロ．ロ	FT
Resistive Mament	27.3	K－FT

Hald Dawn Design Laad Haldawn capacity

HQLD－DQWN SPECIFICATIQN

Na Haldawn Required

SHEARWALL
21日：2nd－Side int．Wall＠Garage

SHEARWALL PROPERTIES：

WALL height，H	$1 \square . \square$	FT．	MAX WALL opening ht，Hc	$\square . \square$	FT．		
Wall Length，L	$1 \square .4$	FT．	Qualifying Wall Length，L	1 ロ． 4	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATIGN：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロS日

FASTENED W／BD NAILS AT G＂ロ．C．PANEL EDGES \＆ 12 ＂ロ． 2 ．PANEL FIELD－EDGES BLOCKED ADEQUATE

QVERTURNING EVALUATIQN：

RESIStIVE DL
DL AT ENDS OF WALL

VERTURNING MamENT Resistive Mament
\square $5 . \square$
5.2 k－FT

Hald Dawn Design Laad HGLDOWN CApACity

HaLD－DOWN SPECIFICATION
Na Haldown Required

Prouect Name：لayMARC Hames Dubey Residence
 M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23
GHEARWALL DESIGN SUMMARY

SHEARWALL 1ロ1：1st－REAR EXt．WALL＠BED 3

SHEARWALL PROPERTIES：

WALL HEIGHT，H	$9 . \square$	FT．	MAX WALL ロPENING HT， H_{c} qualifying wall Length，L	$8 . \square$	FT．	SHEARWALL ASSEMBLY	
Wall Length，L	15.1			5.6			P

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロSB

FAStENED W／Bd NAILS AT 6＂ם．c．pANEL EdGES \＆ 1 z＂ם．c．pANEL FIELD－Edges blocked ADEQUATE

QVERTURNING EVALUATION：

RESISTIVE DL	752
	PLF
	$120 \square$

QVERTURNING MIQMENT	3.6
RESISTIVE MIMMENT	K－FT
	45.8

Hald Dawn Design Laad HaLDOWN CAPACITY

HQLD－DQWN SPECIFICATIQN
Na Haldawn Required

SHEARWALL 1ロZ：1st－Frant Ext Wall＠play Rm．

SHEARWALL PROPERTIES：

WALL height，H	$9 . \square$		MAX WALL opening ht，He	$5 . \square$	FT．		
Wall Length，L	16.1	FT．	QuALifying Wall Length，	7.1	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATIUN

P1－1－SIDE 7／16＂ロSB

FASTENED W／BD NAILS AT 6＂ロ．C．PANEL EDGES \＆ 1 2＂ロ．c．PANEL FIELD－EDGES BLICKED ADEQUATE

QVERTURNING EVALUATION：

Resistive DL	448
DL At ends af wall	12 ロロ

QVERTURNING MamENT Resistive Mament
 Haldawn capacity

HaLD－DOWN SPECIFICATION
Na Haldawn Required

Prouect Name：لayMARC Hames Dubey Residence
 M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23
GHEARWALL DESIGN SUMMARY

SHEARWALL $1 \square 3: 1$ st－SIDE INT WALL＠PLAY RロロM

SHEARWALL PROPERTIES：

WALL height，H	$9 . \square$	FT	Max wall apening ht， $\mathrm{H}_{\text {c }}$	$\square . \square$	FT		
WALL Length，L	9.7	FT	Qualifying Wall Length，L	9.7	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

$$
\begin{aligned}
& \text { P1-1-SIDE 7/16"ロSB } \\
& \text { FASTENED } W \text { / BD NAILS AT 6"ロ.C. PANEL EDGES \& } 12 \text { "ם. } \mathrm{Z} \text {. PANEL FIELD - EDGES BLOCKED } \\
& \text { ADEQUATE }
\end{aligned}
$$

QVERTURNING EVALUATION：

Hald Dawn Design Laad Haldawn capacity

HQLD－DQWN SPECIFICATIQN
Na Haldawn Required

SHEARWALL 21 1：2ND－Side INt．WALL＠GARAGE

SHEARWALL PROPERTIES：

WALL height，H	$1 \square . \square$	FT	Max wall opening ht，hc	$\square . \square$	FT．		
WALL Length，L	6.3	FT．	QuALifying Wall Length，L	6.3	FT．	Shearwall Assembly	P1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロSB

fastened W／Bd NAILS at 6＂ם．c．panel edges \＆ 1 z＂ם．c．panel field－edges blocked ADEQUATE

QVERTURNING EVALUATION：

Resistive DL	$14 \square$
DL At ends of wall	1 ロロロ

QVERTURNING MamENT Resistive Mament \square $4 . \square$ K－FT

Hald Dawn Design Laad HGLDOWN CApACity

HaLD－DOWN SPECIFICATION
Na Haldawn Required

Prouect Name：لayMARC Hames Dubey Residence
 M\＆K PRロJECT \＃：154－23ロロ1

ENGINEER：JCL
DATE：27－APR－23
GHEARWALL DESIGN SUMMARY

SHEARWALL 1ロ4：1st－SIDE INTWALL＠GARAGE

SHEARWALL PROPERTIES：

WALL height，H	1.5		Max wall opening ht， H_{c}	$\square . \square$	FT．		
Wall Length，L	$1 \square .3$	FT	Qualifying Wall Length，L	1 ロ． 3	F	Shearwall Assembly	P 1

CAPACITY EVALUATIGN：

SHEARWALL ASSEMBLY SPECIFICATION

P1－1－SIDE 7／16＂ロS日

FAStENED W／Bd NAILS AT 6＂ם．c．pANEL EdGES \＆ 1 z＂ם．c．pANEL FIELD－Edges blocked ADEQUATE

QVERTURNING EVALUATION：

aVERTURNING MamENT Resistive Mament
 K－FT

Hald Dawn design Laad HaLDOWN CAPACity

HQLD－DQWN SPECIFICATIQN

Na Haldawn Required

SHEARWALL 1ロ5：1st－Side int Wall＠garage

SHEARWALL PROPERTIES：

WALL HEIGHt，H	1.5	FT．	MAX WALL 口PENING HT，Hc	$\square . \square$	FT．		
Wall Lengih，L	6.3	FT．	QuALifying Wall Length，L	6.3	FT．	Shearwall Assembly	P 1

CAPACITY EVALUATION：

SHEARWALL ASSEMBLY SPECIFICATIUN

P1－1－SIDE 7／16＂ロSB

fastened w／Bd NAILS at 6＂ם．c．panel edges \＆ 1 z＂ם．c．panel field－edges blocked ADEQUATE

QVERTURNING EVALUATION：

aVERTURNING MamENT Resistive Mament \square $\square .8$
$5 . \square$ $5 . \square$ K－FT

Hald Dawn Design Laad HGLDOWN CApACity

HaLD－DOWN SPECIFICATION
Na Haldawn Required

